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ABSTRACT 

 

Three wastewater treatment systems (WWTS) situated on Cayes in the Belize Barrier Reef 

System were assessed in terms of the unique public health and environmental circumstances of being a 

tourist destination surrounded by fragile coral reef. Laughing Bird Caye, Silk Caye, and Little Water Caye 

are three small cayes that are the staging points for local diving, fishing, and other recreational tourism. 

All three systems are based upon pour-flush toilets, semi-anaerobic biodigesters and drainage fields. 

Limitations in cost, available resources, useable area, high infiltration rates of the sand, and salinity of the 

water have played a major factor in the construction and performance of the WWTS on the Cayes. This 

thesis aims to form an understanding of treatment efficiency of the WWTS, investigate the effectiveness 

of decentralized saltwater-based WWTS in comparison to freshwater-based WWTS, and provide 

recommendations to improve the performance and resource recovery in a manner appropriate for the 

context in which the systems are deployed. 

A mathematical model was developed to predict the performance of the WWTS based on 

available operational and water-quality input data. The model is based on the mass balances of six 

species: inert solids, fecal solids, bacterial biomass, soluble substrate (i.e. dissolved organic carbon), 

ammonium and nitrate.  Effects of salinity were estimated for the two saltwater-based WWTS.  The 

model predicted the effluent concentrations of fecal solids, soluble biological oxygen demand (BOD), 

ammonium, and nitrate. A sensitivity analysis was also performed on the predicted effluent treatment 

efficiency based upon influent load, oxygen concentration and system salinity.  

Results from Silk Caye and Laughing Bird Caye indicate that varying the number of visitors from 

seasonal lows to highs has a moderate impact on the effluent fecal solids and soluble BOD in the effluent. 

Due to the relatively large volume of the WWTS at Little Water Caye, and thus high HRT, varying the 
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number of visitors did not have a significant effect. The model predicted a reduction of nitrogen from the 

effluent due to settled solids and the assimilation of the nitrogen into bacteria. However the model 

consistently projected an effluent nitrate concentration (as mg/L as N) between 60 and 63 across the three 

WWTS. The oxygen concentration within the WWTS had the greatest effect on effluent BOD of the three 

parameters tested in the sensitivity analysis. Results from the sensitivity analysis indicate that a minimum 

concentration of 0.95 mg/L of oxygen is required before the model can accurately predict the effluent 

BOD concentration.  The concentration of effluent fecal solids did not significantly change with changes 

in oxygen concentration.  Salinity had a significant effect on the predicted fecal solids and soluble BOD 

in the effluent. Predicted fecal solids in the effluent wastewater increased approximately 60 percent from 

freshwater conditions to 4 percent salinity. Similarly, effluent BOD concentration increased strongly with 

increasing salinity. The increase in concentration is due to the major reduction of substrate-consuming 

bacteria by cell-die-off. The model predicts that a significant increase in cell die-off begins to occur at 2.4 

percent salinity. 

The predicted effluent of the freshwater-based WWTS on Little Water Caye was compared to 166 

wastewater treatment plants operating in Brazil. Comparison between the WWTS on the Caye and the 

decentralized WWTS in Brazil indicate that the predicted removal efficiencies of total suspended solids 

and soluble BOD are higher than the measured efficiencies of the WWTS. However, the total nitrogen 

removal efficiency for the WWTS on the Caye was the least effective; most-likely because the model 

does not account for denitrification within the biodigester. The comparison between the WWTS illustrates 

that the predicted removal efficiency of BOD and TSS solids is most likely less in the actual measurement 

than predicted value from the model.  

The WWTS on the Cayes were constructed to mitigate the impacts of the wastewater produced by 

visitors on the general health of the pubic and the environment.  Considering the reports of the 

eutrophication affecting the coral reefs surrounding the Cayes, the WWTS have largely failed in at least 

one aspect of their purpose.  The effluent water quality predicted by the model also suggests that 

significant concentrations of nitrogen are entering the surrounding ocean habitat as ammonia and nitrate. 
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Recommendations to improve the effluent wastewater quality were separated into three categories based 

upon the required level of input to realize the recommendation.  The input includes the capital cost and 

labor of the change, the level of buy-in from the users of the system, and the resulting maintenance 

requirements. The implementation of a urine separation toilet system was proposed as a method to reduce 

effluent nitrogen entering the environment and to create a resource recovery system (RR) from the 

already constructed WWTS.
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CHAPTER 1: INTRODUCTION 

 

The treatment and elimination of wastewater poses a challenge around the world. Plagued by 

budget shortages, lack of local expertise, and inadequate maintenance and management practices, the 

majority of low- and middle-income countries do not adequately treat municipal wastewater (Flores et al., 

2009; Massoud et al., 2009; Singhirunnusorn and Stenstrom, 2009).  As Target 7.C of the Millinium 

Development Goals, all 189 United Nations (UN) member states agreed to “halve, by 2015, the 

proportion of the population without sustainable access to safe drinking water and basic sanitation” 

(Watkins et al., 2006). Although significant progress has been made to reduce the number of people 

worldwide without access, the World Health Organization (WHO) and the United Nations Children's 

Fund (UNICEF) estimates that over 2.4 billion people worldwide do not have adequate access to safe 

sanitation (WHO/UNICEF, 2015). Due to these factors, the majority of sewage produced in the low- and 

middle-income countries is not adequately treated before being discharged into local water bodies 

(Gutterer et al. 2009).  These challenges are even more apparent and important when the receiving water 

bodies host some of the most fragile organisms in the ocean, coral.  Coral reefs are widely considered the 

most complex and diverse of all marine ecosystems (Lapointe, 1997).  Nutrient fluxes caused by 

anthropogenic sources have lain waste to these ecosystems around the world (Bruno et al. 2003; Rasher et 

al. 2012; D’Angelo & Wiedenmann 2014).  The Great Barrier Reef off the coast of Australia has 

experienced a reduction of more than 70% of its hard cover coral, largely attributed to a chronic state of 

eutrophication as well as other compounding factors linked to increasing temperatures and ocean 

acidifications (Bell et al. 2014). Target 6.3 of the MDG aims to improve water quality by reducing 

pollution and halving the proportion of untreated wastewater that enters the environment globally (Zhang 

et al., 2016). 
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Situated in and around the Belize Barrier Reef System, a world heritage site, Little Water Caye, 

Laughing Bird Caye, and Silk Caye play a major role in the local tourism and fishing economy of Belize, 

hosting as many as 50 visitors per day at each caye (SEA Belize, 2010a, 2010b).  Many of the tourists 

visit the cayes to scuba dive and snorkel around the coral reefs that surround the cayes.  This raises two 

challenges: first, how to provide adequate sanitation services to the daily visitors; and second, how to 

protect the general public health and the local coral ecosystem from the wastewater generated by human 

visits?  SEA Belize has sought to answer this challenge by employing Eco-Friendly Solutions, a local 

company in Belize, to construct a wastewater treatment system on each of the three Cayes. 

 Through a series of advanced treatment processes, Eco-Friendly Solutions has sought to mitigate 

the effects that the generated wastewater can have on the local environment and human health.  Each of 

the three Cayes has presented a unique situation with respect to the design and construction of the 

wastewater treatment systems.  All three systems are based upon pour-flush toilets, septic tank and 

drainage field; but cost, available resources, spatial limitations, and erosion have played a major factor in 

the actual construction of the wastewater treatment facilities. Freshwater sources on Little Water Caye 

have proven adequate for implementation of a fresh-water-based wastewater treatment system.  No such 

fresh water source is available on Silk or Laughing Bird Caye; thus both systems rely upon seawater for 

operation.  Although the three treatment systems were designed for the treatment and removal of 

wastewater constituents, up until now, no scientific study nor monitoring has been performed on these 

onsite wastewater treatment systems.  

This raises two important needs for the constructed wastewater treatment systems.  The first need 

is to assess the performance of the systems being constructed by Eco-Friendly Solutions in terms of the 

unique public health and environmental circumstances associated with Laughing Bird, Silk, and Little 

Water Cayes.  Performance comprises system reliability, system efficiency, ability of the system to treat 

wastewater to comply with regulatory standards, ability to work in given land requirements, system 

affordability, social acceptability, and overall sustainability.  The second need is a comparison between 

the performance of the saltwater septic systems at Laughing Bird Caye and Silk Caye with the fresh water 
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system at Little Water Caye.  A detailed search through peer-reviewed literature suggest that no studies 

have yet been conducted in the assessment of decentralized saltwater-flush WWTS in a developing-world 

setting.  

 Therefore the objectives of this thesis are: 

1) Predict the performance of three decentralized on-site wastewater treatment systems in 

Belize based on available operational and water-quality input data. 

2) Compare the performance predictions to gathered performance data. 

3) Compare the measured and/or predicted performance of the freshwater system to the 

performance of the two saltwater systems. 

4) Compare the measured and/or predicted performance of the three systems in Belize to 

analogous, existing treatment systems in other locations. 

5) Recommend possible changes to the existing systems to improve performance and 

resource recovery in a manner appropriate to the context in which the systems are 

deployed. 

Taken together, these five objectives will help to (1) form an understanding of the environmental 

and public health services provided and risks posed by these wastewater treatment systems constructed by 

Eco-Friendly Solutions, and (2) investigate the effectiveness of decentralized saltwater-based treatment 

systems in comparison to the freshwater-based system and larger centralized saltwater systems. 

Ultimately, this research aims to protect the health and environmental concerns of the three Cayes and the 

surrounding coral reef. 

To achieve these objectives, Dr. Jeffrey Cunningham and Christine Prouty developed a 

mathematical model that predicted the effluent parameters of biochemical oxygen demand, fecal solids, 

ammonium and nitrate for the WWTS that reside on the Cayes. This thesis sought to utilize the developed 

equations to understand the significant input and operating parameters and how the variations of these 

affected the effluent wastewater quality. With an understanding of the significant parameters, 

recommendations were made to improve the treatment efficiency of the WWTS. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Types of Wastewater  

The proper treatment of wastewater from municipal and household sources is an issue all over the 

globe.  Studies show that 80% of the wastewater generated around the globe is not properly collected or 

treated (Corcoran et al., 2010); approximately 2 million cubic meters are directly discharged into local 

waterbodies each year (WWAP 2012).  These discharges contribute to contamination of inland and 

coastal waters due to the increased inputs of phosphorus and nitrogen from wastewater, and have been 

detrimental to aquatic systems by initiating algal blooms and eutrophic conditions (Gill et al., 2009). The 

unchecked discharge of wastewater in aquatic environments is also the main cause for diarrheal illness 

around the globe (Lens et al., 2005).  Although a critical environmental and public health issue when 

released into the local environment, wastewater can provide benefit if properly treated, collected, and 

used as fertilizer (Xinzhong, 2010). 

Wastewater from household sources can be classified with four categories.  Each type varies in 

the original source, contaminants present, and the concentration of organic matter.  Table 1 is a general 

characterization of the different categories of wastewater, as used in this thesis. 

Table 1: Types of Municipal Wastewater (Brandes, 1978; Nelson and Murray, 2008; 

Collivignarelli, 2012; Tilley et al., 2014) 

 

 

  

Type of 

Wastewater Source 

Black 

Liquid and solid human bodily waste, most commonly produced 

through toilet flushing. 

Grey 

The waste discharged through the kitchen sink and dishwasher, 

tub and shower, and the clothes washing machine. 

Yellow 

Urine when separated from other wastes (with or without 

flushing water). Does not contain fecal matter. 

Brown 

Black water with the exclusion of Yellow wastewater.  Does not 

contain fecal matter. 
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Of the four types of wastewater, black and grey forms are most commonly referenced for 

generation by households, and subsequent flows into a wastewater treatment system (WWTS).  The 

relative strength, contamination, and overall characteristics of the wastewaters depend upon several 

factors, including dilution from flushing, local conditions, time of day, or season (Halabi and Hamed, 

2005).  However, a general expectation of the strength and the composition of the wastewaters is 

presented in Table 2.  In this table, the grey water and black water are separated into the categories of 

developed countries and low- and middle-income countries.  The difference is presented because Oliveira 

& von Sperling (2011) found that concentrations from influent wastewaters in Brazil were significantly 

higher than previously reported in the literature for developed countries.  The general reasoning behind 

the difference in concentrations is that the lower consumption of water in low- and middle-income 

countries and the lower amount of water used for flushing leads to less dilution (Nelson and Murray, 

2008).  In the US, the majority of toilets use 5 gallon tanks to remove the waste, while in most low- and 

middle-income countries much less water is used, meaning all the contaminants are more concentrated.  

Considering the wastewater treatment plants assessed in the study of Oliveira & von Sperling (2011) are 

located in Southern Brazil, a developing country featuring a tropical climate with average temperatures 

between 20 and 25 ⁰C, the black water values reported in Table 2 are likely to be a representation of the 

wastewater found in Laughing Bird Caye, Silk Caye, and Little Water Caye. 

Table 2: Typical Waste Parameters of Black and Grey Wastewater from Developed and Developing 

Countries (USEPA 1980; Oliveira & von Sperling 2011; Peters 2003) 

Contaminant 

Black Water 

(Developed 

Countries) 

Black Water 

(Developing 

Countries) 

Grey Water 

(Developed 

Countries) 

Grey Water 

(Developing 

Countries) 

BOD5  (mg L
-1

) 280 670 260 37 

TSS (mg L
-1

) 450 480 160 290 

Total Nitrogen  

(mg L
-1

) 
1403 78 17 43 

Total Phosphorus 

(mg L
-1

)  
13 9 26 7 

Fecal Coliforms 

(MPN per 100 L) 
2.4 x 10

7
 2.6 x 10

7
 2.3 x 10

6
 1.2 x 10

8
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Within Table 2 several water quality parameters are presented to describe the organic, nutrient, 

and pathogenic pollution contained within wastewater.   

 BOD (Biochemical Oxygen Demand) describes what can be oxidized biologically, by 

bacteria, within the wastewater.  It is usually measured as BOD5, the oxygen consumed over 

a five day period. It is a measurement of the total oxygen consumed by the organisms 

metabolizing the organic matter in the wastewater (Madigan et al., 2009).  Thus, higher 

concentrations of BOD indicate the presence of more organic matter in the wastewater. 

 The Total Suspended Solids (TSS) are usually the main source of turbidity in a water body.  

The amount of solids in water affects treatment of other parameters, and high concentrations 

of solids can cause clogging of treatment systems or leach fields (Payment et al., 1997).   

 Total nitrogen and phosphorus are indicators for the overall nutrient concentration in a 

wastewater.  In raw wastewater, nitrogen is usually present in a complex organic molecular 

form of the proteinaceous matter in feces and urea in urine (Montangero and Belevi, 2007b).  

The phosphorus concentration in urine is almost entirely inorganic, upwards of 95%, and 

excreted as phosphate ions, while the phosphorus in feces is primarily found as calcium 

phosphate (Natural England, 2015). In most bodies of water, either nitrogen or phosphorus is 

the limiting nutrient in the system.  The addition of that nutrient would cause eutrophication 

within the water body (Rabalais, 2002).  In saltwater conditions, nitrogen is usually 

considered the limiting nutrient for biomass accumulation, and ultimately, eutrophication 

(Rabalais, 2002).  

 Fecal coliforms are microbiological indicator species that suggest the relative presence of 

fecal pathogens in the wastewater (Ashbolt et al., 2001). 

 

2.2 The Treatment of Wastewater in the High-Income Countries 

Within the last century the developed world has experienced widespread adoption of centralized 

wastewater treatment plants (WWTP) (USEPA 2002).  With this expansion of centralized treatment came 

a wave of better public health as the proper disposal of wastewater separated fecal pathogens from the 

general population.  Over time, WWTPs have grown and become more complex, and overall treatment 

standards have become more stringent.  No longer are centralized treatment systems simply removing 

pathogenic organisms, or nutrients, from the wastewater stream.  Now the treatment plants are also looked 

upon to be the primary barrier between aquatic ecosystems and emerging micropollutants, such as 
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pharmaceuticals and hormones (Joss et al., 2006).  Whole effluent toxicity methodologies are now often 

incorporated in evaluations of the effluent quality from centralized WWTPs (Garcia et al., 2013).  

While centralized treatment systems are the paradigm for treatment of contaminants and the 

overall water quality of the effluent, many aspects of the plants make them impractical in rural settings.  

Centralized WWTPs are expensive to build and maintain, consume large amounts of energy, produce 

massive quantities of secondary waste (particularly sludge), and require a high level of expertise to 

manage (Von Sperling, 1996; Zeeman and Lettinga, 1999; Muga and Mihelcic, 2008; Garcia et al., 2013). 

Also, the treatment systems depend upon the conveyance of the wastewater from the point of generation 

to the centralized WWTP, which is practical in high density urban areas, but not in low housing density.  

These characteristics make many of the centralized system designs impractical for rural settings, and 

therefore impractical for many areas throughout the low- and middle-income countries.   

2.3 The Treatment of Wastewater with Septic Tanks and Soil Adsorption Systems (SAS) 

Although centralized treatment is prevalent in the developed world, more than 60 million people 

in the United States of America, about 20% of the population, rely upon decentralized wastewater 

treatment systems. This includes as many as one-third of the new homes being built and more than half of 

the mobile homes in the country (USEPA 2002).  Historically the most common type of decentralized on-

site wastewater treatment has been the septic tank with a soil absorption system (SAS) leach field (Garcia 

et al., 2013). The use of septic tanks for principal treatment of wastewater started appearing in the US in 

the late 1800s.  By the middle of the 20
th
 century discharge of the tank effluent into gravel-lined leach 

fields had become commonplace.  Over the last 30 years states have gradually increased the required tank 

and leach field size, while also putting more stringent requirements on where septic tanks can be 

constructed (USEPA 2002).  The requirements have been instituted to reduce the environmental impact 

that septic tank effluent has on the surrounding area. Currently upwards of 15% of the United States 

public relies upon a septic tank to treat the wastewater from their homes and workplaces (Du et al., 2014).    
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Typical onsite wastewater treatment systems are comprised of 4 distinct components: the 

wastewater source, a pretreatment unit, an effluent delivery system, and a component that releases the 

effluent into the surrounding environment (McCray et al., 2005). The septic tank primarily serves as the 

pretreatment unit of the system. Figure 1 is a representation of the normal configuration of a septic tank-

leach field wastewater treatment system. In these systems, the septic tank provides the principal 

treatment, while the leach field serves as the secondary treatment component.   

 

 The primary goal of a septic tank is to act as a settlement chamber to separate the solid and liquid 

effluent through a passive process. As the influent enters the septic tank, the denser solids sink to the 

bottom of the tank and become the sludge layer through the process of sedimentation.  The scum layer is 

comprised of oils and greases that have floated to the surface of the wastewater.  By allowing only the 

liquid effluent to pass through to the leach field, the septic tank removes 60-80% of solids, oils and 

greases from the wastewater (USEPA 2002). The tank also provides anaerobic conditions to facilitate the 

reduction of suspended solids and organic matter within the wastewater (Canter and Knox, 1985).  Table 

3 summarizes typical influent into the septic tank and the reductions of the contaminants in the black and 

grey wastewater.   

Figure 1: Typical On-Site Wastewater Treatment System (Reprinted from 

USEPA 2002, open domain) 
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Table 3: Common Constituents from the Effluent of  a Septic Tank in a 

Developed Country (Gardner et al., 1997) 

Contaminant 

Black Water 

(Developed Countries) 

BOD  (mg L
-1

) 120-180 

TSS (mg L
-1

) 40-190 

Total Nitrogen (mg L
-1

) 

NO3
-
-N (%TN) 

40-50 

(0%) 

Total Phosphorus (mg L
-1

)  

Orthophosphates (%TP) 

10-15 

(90%) 

Fecal Coliforms (MPN per 100 L) 10
5
 - 10

7
 

 

In many centralized WWTPs, the treatment processes cycle between anaerobic and aerobic 

conditions to remove the nutrients.  Since the environment of the septic tank is anaerobic, neither total 

nitrogen nor phosphorus is removed from the wastewater, but rather both are changed to other forms.  The 

organic nitrogen that enters the septic tank can only be converted to ammonium (NH4
+
) through the 

process of hydrolysis, breaking the complex organic compounds into simpler compounds (Gardner et al., 

1997). The phosphorus that enters the system is converted from the forms of organic and condensed 

phosphate (polyphosphate) to inorganic phosphate to one of the orthophosphates (PO4
3-

, HPO4
2-

, H2PO4
-
) 

(Gill et al., 2009).  Figure 2 depicts a typical septic tank with the associated reactions of nitrogen and 

phosphorus. 

Sludge that settled down to the bottom of the septic tank also undergoes hydrolysis through the 

breaking apart of the proteins and the conversion of volatile fatty acids (VFA), which are in turn dissolved 

into the soluble phase.  The VFAs still release much of the BOD that was originally in the organic 

suspended solids. Because these acids are in the soluble form, they pass from the septic tank in the 

effluent stream, limiting the BOD removal efficiency of septic tanks (USEPA 2002). Pathogenic bacteria 

are also reduced through the system by changes in chemical composition of the wastewater, and through 

the predation of the pathogens by other microorganisms (USEPA 2002). The liquid effluent then travels 

into the leach field, also referred to as a Soil Adsorption System (SAS), where it percolates through the 

vadose zones of the soil and into the groundwater (McCray et al., 2005).   
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In contrast to other treatment systems, a Soil Adsorption System is constructed totally 

underground.  The benefit of being constructed underground is that humans and animals have no direct 

contact with the wastewater under normal operations.  This also eliminates the threat of odor from the 

secondary treatment system (Hu et al., 2007). The SAS works by dispersing the septic tank effluent into 

the soil.  SAS utilizes the natural biochemical processes in the soil to assimilate and treat the various 

contaminants (Beal et al., 2005). As the septic tank effluent flows through the soil pores, it becomes 

treated by means of filtration, sedimentation, chemical absorption, and biological reactions (Hu et al., 

2007). Figure 3 shows the various zones of a typical SAS system.  The critical zone of the SAS is the 

biomat zone, located directly beneath the septic tank effluent pipe.  Formed by biological growth on the 

soil media as the effluent passes through, the biomat zone is characterized by a clogging of the pores 

within the natural soil. This accumulation of microorganisms takes several months to develop within the 

soil. All treatment processes that occur in the SAS are highly influenced by the performance of the biomat 

zone (Gardner et al., 1997).  The vast majority of the removal of contaminants occurs within the first few 

centimeters of this biologically active zone, including the removal of TSS, BOD, and pathogens (Beal et 

Figure 2: Typical Septic Tank and Nutrient Chemistry that Occurs (Adapted from 

USEPA 2002, open domain) 

Gas 
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al., 2006). The biomat also slows down the infiltration so that nutrients can be taken up by the 

microorganisms and plants (Hu et al., 2007). 

 
Figure 3: Leach Field of a Soil Adsorption System (adapted image from Open Domain, Appendix G) 

 After passing through the biomat zone, the effluent water trickles down to the vadose zone, 

characterized as the unsaturated zone directly beneath the biomat.  Using oxygen that has diffused in 

through the porous soil, the vadose zone promotes degradation of pathogens and physical filtration of 

solids that were not collected in the septic tank (Beal et al., 2005).  The purification processes that occur 

when the septic tank effluent passes through the vadose zone are critical to the overall treatment of the 

contaminants. It is within the vadose zone that ammonia from the wastewater quickly undergoes 

nitrification into nitrite and nitrate, as seen in equations 1 and 2: 

𝑁𝐻4
+ +

3

2
𝑂2  → 𝑁𝑂2

− + 2𝐻+ + 𝐻2𝑂          [1]  

𝑁𝑂2
− +

1

2
𝑂2  → 𝑁𝑂3

−       [2] 
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Microbial denitrification requires anoxic conditions, the presence of organic substrates, and NO3
- 

as the electron acceptor (Cannavo et al., 2004). Although most studies concur that there is some 

denitrification that occurs in the septic system, studies suggests that most of the denitrification that occurs 

in the system occurs in the vadose zone (Cannavo et al., 2004; McCray et al., 2005; Gill et al., 2009).  

Denitrification is the stepwise reduction of nitrate into nitrogen gas by bacteria, depicted in Equations 3 

and 4. Since the denitrifying bacteria are part of the heterotrophic community, an organic substrate is 

needed to serve as an electron donor (Cannavo et al., 2004). In the equations methanol, CH3OH, is used 

as the electron donor; however any readily assimilable organic substrate can serve as the donor.  

𝑁𝑂3
− +

1

3
𝐶𝐻3𝑂𝐻 → 𝑁𝑂2

− +
1

3
𝐶𝑂2 +

2

3
𝐻2𝑂    [3]   

𝑁𝑂2
− +

1

2
𝐶𝐻3𝑂𝐻 →

1

2
𝑁2(𝑔𝑎𝑠) +

1

2
𝐶𝑂2 +

1

2
𝐻2𝑂 + 𝑂𝐻−  [4]  

Cannavo et al. (2004) noted that the vadose zone features several benefits that aid in the 

denitrification process. First, oxygen concentrations tend to decrease with depth, which favors the 

denitrification process. Secondly, the carbon dioxide concentration, largely controlled by microbiological 

activities, affects soil pH to a more basic level.  Denitrification of NO2
-
 to nitrogen gas occurs more 

readily under basic conditions. Thirdly, dissolved organic carbon is generally present due to the septic 

tank effluent.  Lastly, residence times of water and the solutes within the effluent are long. The type of 

soil media thus has an impact on the denitrification process. A study by Tucholke et al. (2007) showed 

that the denitrification of nitrite tends to occur more readily in fine-textured soils (i.e. clays and silt/clays) 

compared to coarse-textured soils (silts and sands) due to the longer residence times. 

The principal removal mechanisms of phosphate also occur in the vadose zone. The 

orthophosphate undergoes adsorption or mineral precipitation, depending on the pH and the chemical 

makeup of the soil.  Phosphorus precipitation is controlled by iron and aluminum under acid conditions, 

and by calcium content under alkaline conditions as is typical of domestic sewage (Arias et al., 2001).  

Therefore the attenuation of phosphorus depends on the presence of aluminum, manganese, or iron in 

acidic soils and the presence of calcium in alkaline soils (Gill et al., 2009).   
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An important aspect of the SAS is drainage.  Without sufficient drainage or ventilation for 

oxygen in the vadose zone, a clog can occur as a result of soil particles bonding together, creating an 

anaerobic environment that reduces the ability to treat the contaminants (Hu et al., 2007). 

Although septic tanks are commonly used in the developed world, there are major shortcomings 

in their abilities.  Septic tank treatment systems rely upon technology and treatment practices that are now 

over 100 years old.  Septic tanks were never designed to treat nutrients (nitrogen and phosphorus) that 

cause eutrophication; these nutrients can cause significant impact on the ecosystems receiving the effluent 

(Lapointe et al., 1990; Withers et al., 2011).  There are newer septic tank systems available that are better 

at treating nutrients in the wastewater.  However, these new systems are not installed in most areas (Nasr 

and Mikhaeil, 2014; Natural England, 2015).  The US Census Bureau estimated that over half of the 

onsite WWTS in use in the US are more than 30 years old (USEPA 2002). These problems have 

culminated in the USEPA reporting that 10%-20% of all decentralized WWTS are failing in their ability 

to effectively treat nutrients to the required EPA limits (USEPA 2000). The problem is that nitrate is 

soluble and is easily transported to ground water after being discharged from the WWTS (Glass and 

Silverstein, 1999). One study performed in 1991 found that 74% of nitrogen from wastewater effluent that 

entered a septic tank-leach field treatment system was discharged into the groundwater (USEPA 1991).  

In another study only about 15% of phosphorus was removed by the treatment system (Gill et al., 2009).  

More recent studies have shown that septic systems have little or no treatment impact upon 

micropollutants (DeJong et al., 2004; Stanford et al., 2010).  Hormones, such as estrogen, are of 

particular concern.  These hormones may affect the reproductive abilities of aquatic vertebrates if 

wastewater-impacted groundwater reaches a surface water body (Swartz et al., 2006). 

2.4 The Challenges of Treating Wastewater in the Low- and Middle-Income Country 

While large centralized wastewater treatment systems are commonly used and applicable in the 

developed world, their hindrances make them impractical in the low- and middle-income countries. 

Previous wastewater treatment plants constructed in the low- and middle-income countries have used 

conventional wastewater treatment techniques that were practical in a developed-world setting, yet widely 
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ignored the contextual differences of economics and culture between the two settings (Singhirunnusorn 

and Stenstrom, 2009).  As a result, many treatment plants in low- and middle-income countries have been 

abandoned due to the inability to deliver adequate operation and maintenance, find spare parts, function 

during frequent power supply cuts, and/or find staff with necessary skill levels (Gutterer et al., 2009).  A 

study conducted in Mexico found that of all the centralized wastewater treatment systems that were 

constructed in the country, 90% of the plants are non-functional (Flores et al., 2009).  Similarly, a recent 

survey in Thailand found that only 20% of the municipal-scale wastewater treatment plants were in 

working condition (Singhirunnusorn and Stenstrom, 2009).  To cope with the problems of centralized 

WWTS, decentralized WWTS, in coordination with local governments, are increasingly looked upon to 

provide sanitation to the low- and middle-income countries (Libralato et al., 2012). In general, 

decentralized WWTS are usually more flexible and can adapt easily to local conditions as well as grow 

with the community as its population increases (Bdour et al., 2009). 

The major factor that impairs conventional WWTP from performing correctly is the contextual 

differences that exist between developed and low- and middle-income countries.  Aside from the 

technical aspects that engineers often analyze, there are many other factors that determine the suitability 

and sustainability of wastewater treatment plants in the low- and middle-income countries (Tilley et al., 

2014).  An ideal WWTP should not only produce the best quality effluent at the most affordable price, but 

should meet local needs, such as: socio-cultural acceptability, technological feasibility, resource reuse and 

conservation, economical affordability, and environmental acceptability (Muga and Mihelcic, 2008; 

Flores et al., 2009; Singhirunnusorn and Stenstrom, 2009; Libralato et al., 2012).   

2.5 Decentralized Treatment of Wastewater in the Low- and Middle-Income Country 

While there are many challenges associated with wastewater treatment in the low- and middle-

income countries, there are also many opportunities for alternative systems that are not commonly 

employed in developed countries.  In the developed world, many of the wastewater treatment options are 

limited due to the stringent effluent quality standards that are enforced.  However, this is not the case in 

most low- and middle-income countries.  There is a wide range of water quality standards in low- and 
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middle-income countries where the vast majority of the required effluent quality is more lenient than in 

the developed world (Massoud et al., 2009).  Due to the weighted importance of other factors and the 

leniency of effluent quality standards, many types of decentralized WWTS are employed, other than just a 

septic tank-leach field system.  Table 4 is a list of some of the most common decentralized WWTS that 

have been used in the low- and middle-income countries.  As noted in Table 4, each WWTS is 

advantageous for certain situations, while impractical in others. 

Table 4: Types of WWTS Used in the Low- and Middle-Income Country (Von Sperling, 1996; Flores 

et al., 2009; Gutterer et al., 2009; Massoud et al., 2009; Oliveira and von Sperling, 2011; Starkl et al., 

2013) 
Technology Benefits Disadvantages 

Septic Tank + 

Anaerobic filter 

 Can receive higher loads of wastewater than 

other WWTS. 

 Relatively little maintenance required. 

 Drain fields are prone to clogging. 

 Unable to remove nutrients from the effluent 

efficiently. 

Facultative pond 

 Good treatment of pathogens 

 Able to absorb and sequester nutrients. 

 Cost effective where land is inexpensive. 

 Problems with sludge accumulation. 

 Mosquitos, insects and odor 

 Require more land than other WWTS. 

Upflow Anaerobic 

Sludge Blanket 

Reactor (UASB) 

 Very low land requirements. 

 Simple construction, operation and maintenance. 

 Low energy requirements. 

 Effluent not aesthetically pleasing. 

 Unable to remove nutrients from the effluent 

efficiently. 

 Sensitive to variations in influent loads. 

Anaerobic pond 

 Simple and robust. 

 Ability to handle large fluctuations in influent 

load. 

 Problems with sludge accumulation. 

 Mosquitos, insects and odor. 

 Require more land than other WWTS. 

Anaerobic Filter 

 Good adaptation to different influent types and 

concentrations. 

 Sludge stabilization is in the reactor itself. 

 Resistant to changes in influent load. 

 Restricted to influents with low concentrations of 

suspended solids. 

 Effluent not aesthetically pleasing. 

 Risk of clogging the filter. 

Activated Sludge 

 High efficiency BOD removal. 

 Achieve greater nitrification and phosphorus 

removal. 

 Operational flexibility. 

 High construction and operation costs. 

 Need of sophisticated operational skillsets. 

 Possible environmental problems due to noise 

and aerosols. 

Dehydration 

(Ecosan) toilets 

 Little to no additional water is required. 

 Waste able to be converted to renewable 

resource. 

 Requires greater responsibilities to the user than 

other WWTS. 

 Must be cleaned out every 6 months. 

Constructed Wetland 

 Minimal operation is required. 

 Inexpensive to construct and operate. 

 Able to handle variable wastewater loading 

condition. 

 Require more land than other WWTS. 

 More complicated than waste stabilization ponds, 

requiring more management skills. 

 May take a year or two to achieve the optimum 

treatment efficiency. 

 

2.6 Components of Eco-Friendly Solutions Wastewater Treatment 

In Laughing Bird Caye, Little Water Caye, and Silk Caye the situation includes five important 

aspects that control the selection of a WWTS: 

 Little land area to place a WWTS 

 Surrounded by fragile coral that is susceptible to excess nutrient loading 
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 Fine sands create high infiltration rates in the soil 

 Tourists visit and swim in the water directly off of the Cayes 

 Anywhere from 5 to 200 tourists visit each Caye daily, depending on the season 

Because of these limitations Eco-Friendly Solutions, a small company in Belize, was tasked with 

creating WWTS in these Cayes.  The WWTS ability to remove nutrients from the effluent before they 

seep into the sandy soil, and ultimately, leach out into the aquatic ecosystem is important for the health of 

the surrounding coral reefs. Multiple studies have shown that excess nutrients from anthropogenic sources 

have led to a steep decline in coral species (Hallock and Schlager, 1986; Lapointe, 1997).  In the 

Caribbean, coral populations have been reduced steadily over the past 30 years.  The combination of 

decreased fish populations that eat algae and increased coral mortality have led to a Caribbean-wide 

ecosystem shift from coral-dominated to microalgae-dominated ecosystems (Scheffer et al., 2001; Bruno 

et al., 2003).   

2.7 Effects of Saltwater on Wastewater Treatment 

In two of the Cayes, Laughing Bird and Silk, the entire WWTS uses salt water to flush the toilets.  

The pour-flush toilet operates nearly the same as toilets in developed countries, where water is used to 

move the effluent to an area away from direct contact with the user.  In the case of the WWTS in the 

Cayes, the wastewater (effluent plus water used to flush the toilet) flows into a partially anaerobic 

biodigester.  Salt water is used because there is no fresh water readily available on the Cayes.  Although 

the use of salt water for flushing is common in coastal communities of the low- and middle-income 

countries, there is little literature of the performance of decentralized WWTS with saline wastewater.  

Instead, studies have looked at specific areas of treatment in salt water conditions; namely, the removal of 

pathogens, the stabilization of organic compounds, and the treatment of nutrients (Hanes and Fragala, 

1967; Omil et al., 1995; Dinçer and Kargi, 1999; Uygur and Kargi, 2004; Anderson et al., 2005; Gross 

and Bounds, 2007; Wu et al., 2008).  No studies were found that have looked at all three of these 

objectives in one study for salt water. In the absence of literature on the performance of decentralized salt-
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water-based WWTS, an inference of the treatment abilities must be made using the information available 

about salt-water-based centralized WWTS and salt-water-based anaerobic digesters.  

Few functioning centralized saltwater WWTS were identified within published literature that was 

found, namely: Hong Kong; Avalon, CA; the Marshall Cayes, located between Hawaii and Papua New 

Guinea in the Pacific Ocean; and South Tarawa, in the Republic of Kiribati (Yang et al., 2015).  Of these 

systems, Hong Kong’s WWTS is the only one that functions extensively on salt water flushing (Li et al., 

2005).  In Hong Kong, the use of salt water for flush is necessary to conserve the limited fresh water 

available in the area.  Due to the extremely high population density in Hong Kong, the annual per capita 

supply of fresh renewable water is constrained to 125 m
3
, well below the World Bank’s classification of 

minimum renewable water “scarcity” of 1000 m
3
 (Leung et al., 2012). The dual system of fresh water-salt 

water flushing was constructed in 1958 to combat the severe shortage of fresh water that plagues Hong 

Kong.  Currently the WWTS provides sanitation for over 80% of the city’s 7 million people, supplying an 

average of 750,000 m
3
 of seawater per day to fill toilets (Leung et al., 2012).  In most regards, the WWTS 

of Hong Kong functions like one of fresh water, containing screening processes, sedimentation, and 

sections specifically for aerobic and anaerobic digestion (Tang et al., 2007). 

 
Figure 4: Diagram of the Saltwater-based WWTS in Hong Kong (Source: Tang et al., 2007, created 

image) 

 

Although the WWTS at Hong Kong does have issues due to the characteristics of saltwater, most 

notably corrosion of pipes, severe disinfection by-products from chlorination, sudden deterioration of 

influent water quality, and ecological problems of effluent discharge in freshwater rivers (Tang et al., 
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2007), the plant has functioned well at producing high-quality effluent.  Using internal data from the 

Municipality of Hong Kong, Lueng et al. (2012) determined that the effluent from the WWTS of Hong 

Kong would meet the effluent standards of the US Environmental Protection Agency and the Ministry of 

the Environment of Japan.  Thus, the example of Hong Kong shows that wastewater treatment of salty 

black water, at least in centralized WWTS, is possible.  

To estimate the likely performance of a saltwater-based decentralized WWTS, the system must be 

looked at in its ability to treat pathogens, stabilize organic compounds, and removal of nutrients from the 

waste stream. The survival of pathogenic bacteria has been a topic of discussion in scientific literature for 

years.  Aside from the obvious public health implications of fecal bacteria living in recreational seawater, 

high concentrations of NaCl provide a unique environmental stress that scientists use to measure the 

bacterial response.  In general a high salt concentration in wastewaters induces osmotic stress to the 

microbiological species, resulting in the inhibition of many enzymes, decrease in cell activity, and 

eventually plasmolysis (Rene et al., 2008).  The crippling effects of seawater environments affect the 

fecal pathogenic bacteria in much the same way. Multiple studies have found that neither E. coli nor 

enterococci, two common indicator bacteria used to detect the presence of fecal contamination, are able to 

reproduce in the open, saltwater environment (Dawe and Penrose, 1978; Rozen and Belkin, 2005).  

Although the bacteria are unable to reproduce, the cells do survive and remain viable in saltwater.  The 

total time needed for fecal bacteria cells to lyse is difficult to accurately determine and relies on several 

factors. These factors include: nutrient availability, salinity, temperature, pH, microbial predation, and 

solar radiation (Davies-Colley et al., 1994; Rozen and Belkin, 2005).  The exact amount of time required 

for cell death is hard to determine, but the maximum time that the bacteria can survive in open seawater 

has been found to be around 5 days (Moss and Smith, 1981). Sinton et al. (1994) mixed sewage into 

seawater and found that the inactivation of one log of pathogenic bacteria required no more than 115 

hours. Considering that the pathogenic bacteria entering a saltwater-based decentralized WWTS would 

first pass through an anaerobic biodigester, and then a leach field, where other stresses and predation 

occur, it is unlikely that pathogenic organisms from the WWTS would contaminate the water around the 
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Cayes.  There are multiple studies that have found that pathogenic organisms survive, and even 

reproduce, in saltwater sediments  (Shiaris et al., 1987; Anderson et al., 2005; Rozen and Belkin, 2005).  

However, all of these articles report that raw sewage was deposited directly into the seawater, which 

would not be the case for a saltwater-based WWTS. 

Two other critical aspects in the treatment of wastewater are nutrient removal and organic 

compound stabilization.  As described in the previous paragraph, the stress of salinity causes a decrease in 

cell activity and even plasmolysis.  Due to this stress, the performance of biological treatment in saline 

wastewaters is poor, leading to poor-quality effluent in terms of nutrient removal (Yang et al., 2013). 

Under aerobic conditions, salinity was shown to affect the metabolic activity of nitrifying bacteria, 

reducing microbial growth and ammonium oxidation rates (Bassin et al., 2012). In the case of anaerobic 

digestion, studies indicate that the saltwater inhibits the production of biofilms, and renders the biofilm 

unstable in the formation of an anaerobic filter (Yang et al., 2013).  In addition to the salinity of the 

wastewater, the density of salt in comparison to fresh water has been found to alter or inhibit the sludge 

settleability characteristics, sludge flocs and biofilms architecture (João P. Bassin et al., 2011).  These 

results together have combined to reduce the effectiveness of WWTS.  In a study performed by Panswad 

& Anan (1999), unacclimated bacteria functioning in an anaerobic-anoxic-aerobic treatment train were 

exposed to 30 g NaCl/kg for four weeks.  The bacteria experienced reductions in performance by at least 

30% for the removal of COD, nitrogen, and phosphorus in comparison to the freshwater-based WWTS.  

However, these results also come with a silver lining.  During that same study, acclimated bacteria were 

10% better at removing the contaminants than the unacclimated bacteria.  Similarly, in another study on 

the treatment of fishmeal waste, acclimated bacteria were able to hydrolyze suspended organic solids, 

mainly proteins, and remove COD sufficiently (Guerrero et al., 1997).  Furthermore, Bassin et al. (2011) 

showed that acclimated bacteria are able to convert 90% of ammonia to nitrate in nitrification, well past 

the saline concentration of wastewater. 

Judging from the descriptions above in the ability of salt water systems to remove bacteria, 

reduce organic compounds, and remove nutrients from the waste stream, a few general assumptions are 
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made and presented in Table 5.  In general, the elimination of pathogenic organisms is most likely greater 

in salt water conditions than in fresh water WWTS.  However, the ability of salt water WWTS to settle 

organic material and remove nutrients is also likely reduced.  

Table 5: Relative Comparison of Fresh Water and Salt Water 

WWTS in Terms of the General Wastewater Treatment Objectives 

Treatment Objective 

Fresh Water  

WWTS 

Salt Water  

WWTS 

Removal of Pathogenic 

Bacteria 
- + 

Organic Compound 

Settleability 
+ - 

Nutrient Removal + - 
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CHAPTER 3: SITE DESCRIPTION 

 

3.1 Background of the Mesoamerican Barrier Reef  

 The Mesoamerican Barrier Reef in the coastal waters of Belize is part of the largest fringing 

barrier reef in both the Northern and Western hemispheres (World Conservation Monitoring Centre, 

2008).  Stretching over 1,000 kilometers from the Yucatán of Mexico to the coast of Belize, the 

Mesoamerican Reef is second in areal extent only to the Great Barrier Reef of Australia.  Though smaller 

than the Great Barrier Reef, the Mesoamerican Reef has a wider range of geologic features that make 

many areas of the region unique.  Unlike the Great Barrier Reef of Australia, it has benefited from 

relatively low human utilization in the past centuries (Kramer and Kramer, 2002).  Due to the low 

historical Usage and the preservative actions taken by the government of Belize, this area contains some 

of the most pristine habitats of coral in the world (World Conservation Monitoring Centre, 2008).  The 

region possesses essential resources that have important ecological, economic, and cultural significance, 

and that help to sustain an estimated 2 million people that live in the local coastal communities (Kramer 

and Kramer, 2002).   

 The largest components of the Mesoamerican Barrier Reef is the Belize Barrier Reef.  

Representing a sub-set of the Belize Barrier Reef, the Belize Barrier Reef System is the most well-known 

and economically important area of the region.  Recognized as a World Heritage Site in 1996, 7 marine 

reserve areas, as seen in Table 6, adding up to 96,300 hectares of the reef system make up an estimated 

12% of the total Mesoamerican Barrier Reef complex (World Conservation Monitoring Centre, 2008). 

The Reserve System has been cited as having “universal natural heritage value representative of unique 

biological reef formations” (Cho, 2005).  This was historically noted in 1846 when Charles Darwin 

described it as “the most remarkable reef of the West Indies” (Darwin, 1987). This section of the 

Mesoamerican Barrier Reef is the central portion of many interconnected coastal habitats and currents 
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that propagate throughout the Caribbean basin.  A unique collection of fish, invertebrates, birds, sea 

turtles, plants, corals, and other animals inhabit the Barrier Reef.  The region contains the greatest 

concentration of coral in the Caribbean basin, an estimated 90% of some of the rarest types of coral for 

the entire Caribbean (World Conservation Monitoring Centre, 2008).  In addition to the reef ecosystems, 

the region encompasses beaches, coastal rivers and lagoons, mangroves, seagrasses, and coastal wetlands 

that grant essential breeding, nesting, and foraging habitat for numerous species (Kramer and Kramer, 

2002).  An estimated 260 (or 66%) of the 320 resident bird species of Belize visit the cayes and wetlands 

throughout the year, including thousands of birds that use the area as a staging area during seasonal 

migrations.  The parks are also home to several endangered species, including the manatee, the scalloped 

hammerhead shark, the Nassau and goliath grouper, the hawksbill, leatherback and green marine turtles, 

and several coral species (Kramer and Kramer, 2002; World Conservation Monitoring Centre, 2008; SEA 

Belize, 2010a, 2010b).   

Table 6: World Heritage Sites Incorporated into the National Parks of the Belize 

Barrier Reef System 

Name of National Park Hectares 

Glover's Reef Marine Reserve 30,800 

South Water Caye Marine Reserve 29,800 

Sapodilla Cayes Marine Reserve 12,700 

Bacalar Chico National Park and Marine Reserve 10,700 

Laughing Bird Caye National Park 4,300 

Half Moon Caye Natural Monument 3,900 

Blue Hole Natural Monument 4,100 

Source: World Conservation Monitoring Centre (2008) 

 

 This ecologically and economically interconnected region provides local communities with 

abundant resources.  Originally used by local villagers for small-scale fishing and recreation, the Belize 

Barrier Reef System has steadily grown in economic importance with the growth of the local coastal 

population (World Conservation Monitoring Centre, 2008).  Cho (2005) estimated that the Barrier Reef in 

Belize contributed about 30% of the gross domestic product for the entire country of Belize through 

fisheries, eco-tourism, and a relatively new boom of cruise tourism. Currently the main economic service 

of the region is tourism, which is the country’s largest source of foreign exchange (Ministry of 
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Agriculture and Fisheries of Belize, 1995).  An estimated 390,000 tourists visited the Reserve System in 

2006, generating more than $75 million in income for the local inhabitants (World Conservation 

Monitoring Centre, 2008).  In addition to the tourism industry, fishing maintains a small group of people.  

Spalding et al. (2001) reported that approximately 2,000 fishers exported $10.5 million in seafood from 

the area. 

 

Situated within and directly adjacent to the Belize Barrier Reserve System are the 3 Cayes that 

are the focus of this thesis. Laughing Bird Caye, Silk Caye, and Little Water Caye are three small cayes 

managed by the non-governmental organization (NGO) Southern Environmental Association Belize (SEA 

Belize).  Together these three cayes are the staging points for local diving, fishing, and other recreational 

tourism. Laughing Bird Caye and Little Water Caye house a ranger station that carries out marine 

enforcement and aquatic research. SEA Belize has purchased three waste water treatment systems 

(WWTS) from Eco-Friendly Solutions to treat wastewater generated on the cayes. Eco-Friendly Solutions 

Figure 5: Map of Little Water, Laughing Bird, and Silk Caye in the Belize Barrier Reef 

(Reprinted with permission of Girma, 2016; Appendix G) 
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is a company that builds WWTS in Belize.  The approach of Eco-Friendly solutions is the construction of 

semi-anaerobic biodigesters, sometimes multiple in series, followed by small leach fields.   

3.2 Descriptions of WWTS on the Cayes 

As Little Water, Laughing Bird, and Silk Cayes became a more popular tourist destination, SEA 

Belize reached out to a local sanitation company to build WWTS to provide sanitation services on the 

Cayes.  Eco-Friendly Solutions is a small company based out of Belize City that designs and installs 

decentralized WWTS on both the residential and commercial scale.  Contacted in 2009 by SEA Belize, 

Eco-Friendly Solutions built 3 pour-flush bathrooms with the WWTS that rely upon semi-anaerobic 

biodigesters and drain fields. Each system was uniquely designed for the number of daily visitors and the 

amount of money that SEA Belize could pay for the systems.  A general description of each Caye and the 

WWTS installed are provided in the sections below. 

3.2.1 Little Water Caye 

Little Water Caye is strategically located between Laughing Bird Caye and Silk Caye (GPS 

Coordinates: N 16⁰26.921, W 88⁰5.759).  Historically used by local fishermen to receive fresh water, the 

caye was partially purchased by SEA Belize as a base of operations in managing the other cayes.  SEA 

Belize has constructed a ranger station, watchman’s quarters, educational facility, and 300-foot pier on 

the caye. In addition to its function as a hub for researchers and enforcement officials, Little Water Caye 

is also the home of the Placencia Producers Cooperative’s seaweed project.  On the banks of Little Water 

Caye, local fishermen and tour guides have planted seaweed which they harvest to sell in local markets 

and restaurants for nutritional supplements (Sniffin, 2013).  This provides an alternative livelihood for 

those fishermen during the low tourism seasons or when fish stocks are not abundant.   

Built in the summer of 2015, the wastewater treatment system at Little Water Caye (LWC) is the 

newest, and largest, of the three WWTS.  This is the only system of the three cayes that has a freshwater 

treatment system connected to the toilets of the caye. LWC uses a rainwater catchment system that 

provides the residents fresh water year-round.  Thus, unlike Laughing Bird Caye and Silk Caye, the 

wastewater treatment is freshwater-based. 
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The wastewater treatment system consists of two semi-anaerobic biodigesters working in series 

and a leach field. Figure 1 is a schematic of the wastewater system, while Appendix A contains 

photographs of the system. Eco-Friendly Solutions designed the WWTS to handle approximately 3,000 

liters of black or grey water per day. The semi-anaerobic biodigesters are two Rotoplast plastic water 

tanks with capacities of 3,500 liters and 1,200 liters.  The goal of the two biodigesters in series is to 

separate the solids from the effluent wastewater, while providing extra residence time for wastewater in 

the digesters.  While the solids are settling to the bottom of the tank, anaerobic redox zones in the bottom 

and through the middle of the tank nitrify the influent ammonium into nitrate and consume the influent 

BOD. At the top of each semi-anaerobic biodigester is a biofilm contact chamber. The cone-shaped filter 

has been packed with broken plastic crates and PVC pipes to provide extra surface area for the growth of 

organisms required to reduce the BOD and convert the organic nutrients within the system.  The upped 

cavity of the tank does not fill with wastewater, leaving a semi-aerobic zone where the wastewater BOD 

is further consumed and the nitrate undergoes a small amount of denitrification. The sizing of the 

anaerobic biodigesters and designed load of the system produce a hydraulic retention time (HRT) of 1.5 

days.  

Figure 6: Diagram of the Wastewater Treatment System at Little Water Caye  

*Used with permission of Christine Prouty 

 

The leach field consists of a perforated 2-inch polyvinyl chloride (PVC) pipe running down the 

leach field trench, with a combination of crushed conch shells, rocks and coral surrounding the pipe.  The 

 



www.manaraa.com

 
 

26 

 

trench has the dimensions of 30 feet long by 3 feet wide by 3 feet deep, and is located over 100 yards 

away from the nearest coastline to the west. The trench itself was constructed with a construction-grade 

plastic tarp at the bottom so that the treated effluent does not filter into the sandy soil of the Caye, but 

rather stays within the trench.  The trench was then backfilled with rocks with smaller diameter sizes 

being placed at the bottom.  As the trench fills with wastewater, it flows over the top of the liner into the 

local sand.  Lily pads, a native plant that have the ability to take up ortho-phosphates and nitrate from the 

surrounding soil, have been planted in the sand next to the liner to reduce the amount of nutrients that are 

discharged into the sand. Additionally, the nitrate in the wastewater undergoes denitrification as more 

oxygen is available to the microbes. 

By far the largest wastewater treatment system on the Cayes, it is also the least utilized system.  

The regular population of Little Water Caye is a research team, visiting Department of Fisheries 

enforcement officers, volunteers from Projects Abroad, and the rangers that are employed by SEA Belize.  

The research team may consist of 5-6 Belizean or international students and professors.  In addition to the 

4 rangers that occupy the caye year-round, high season usually consists of 10 visitors per day using the 

wastewater treatment system for toilet utilization.  During the low season months, only the 4 rangers use 

the wastewater treatment systems with regularity. 

3.2.2 Laughing Bird Caye 

Laughing Bird Caye is the most well-known of the three Cayes.  Classified as part of the World 

Heritage Site of the Belize Barrier Reserve System, Laughing Bird Caye is the central area of Laughing 

Bird Caye National Park (LBCNP).  Covering approximately 41 km
2
, the national park is located 18 km 

offshore on the shallow reef platform of the Atlantic Coast of the Mesoamerican Barrier Reef (SEA 

Belize, 2010b).  The park supports a nursery and feeding habitat for at least 23 species of “international 

concern, recognized under the International Union for Conservation of Nature (IUCN) Redlist as 

Critically Endangered, Endangered or Vulnerable” (SEA Belize, 2010b).  The caye itself, while only 

4,000 m
2
 in size, provides a wide mixture of habitats that host several endemic species.  Laughing Bird 

Caye is a short 40-minute boat ride from Placencia, a popular tourist town and the launching point for 
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most tours in the area, and is the closest Caye to the Central Belize Coastline that has beaches instead of 

mangroves (SEA Belize, 2010b). This location makes Laughing Bird Caye a critical tourist site for those 

interested in visiting a part of the Belize Barrier Reserve System but without SCUBA training or interest 

in boating to the next popular tourist site (Silk Caye) approximately an hour away.  Annually, LBCNP 

hosts between 6,500 and 10,000 tourists, of which 90% are foreigners and 10% are Belizean (SEA Belize, 

2010b).  The Caye is divided into two sections: the highly trafficked tourists’ section and the restricted 

access (SEA Rangers only) birds’ nesting ground.  The tourism section includes barbeque pits, a palapa 

with picnic tables, a public use toilet with a salt-water based treatment system, and the rangers’ station.  

The rangers’ station is the largest structure on the caye and was constructed in 2001 to provide housing 

for enforcement officials to improve their ability to carry out conservation practices in and around 

2Laughing Bird Caye National Park. 

Figure 7: Diagram of the Wastewater Treatment System at Laughing Bird Caye 

*Used with permission of Christine Prouty 

The wastewater treatment system consists of a semi-anaerobic biodigester, a rock filter, and a 

small leach field. A schematic is drawn in Figure 7.  Since there is no fresh-water collection system on the 

Caye, the wastewater treatment system is operated entirely from saltwater collected along the shoreline.  

The biodigester is a 1,500 liter Rotoplas water tank, and the rock filter is a 500 liter Rotoplas 

water tank with a rock bed incrementally decreasing in size as the water flows upward. Principally used 

following the facultative pond or maturation pond WWTS, studies indicate that the effluent BOD and 

solids are further removed in a functioning rock filter, but have little effect in the denitrification process 
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(Middlebrooks, 1988; Katukiza et al., 2014). The leach field was constructed like the leach field in Little 

Water Caye, in that an impermeable plastic sheet was installed in the base of the trench.  A 2” perforated 

PVC pipe discharges the effluent into the leach field, which is filled with rocks and coral, and sand covers 

the entire leach field.  However, there are several key differences between the two leach fields.  In 

Laughing Bird Caye, the leach field is much smaller, measuring 3 meters long, by 0.6 meters wide, by 1 

meter deep.  In addition, the leach field is located less than 5 meters from the nearest shoreline.  Appendix 

A contains photos that depict how near the shoreline is to the leach field.  To combat the proximity of the 

leach field to the shoreline, native vegetation, water lilies, was planted along the leach field.  The idea is 

that the water lilies absorb the excess nutrients in the effluent before those nutrients come into contact 

with the seawater. 

3.2.3 Silk Caye 

Silk Caye is part of the Gladden Spit and Silk Caye Marine Reserve (GSSCMR).  The Caye is 

located 35 km offshore, due east of Placencia.  The GSSCMR network was created in 2001 as a means to 

“preserve unique and important marine habitats” (Cho, 2005). The concept of a Marine Reserve or 

Marine Protected Area (MPA) is not only for environmental protection, but also to improve the 

conditions of fisheries and enhance the area for tourism.  As a mating area of the cubera, dog, and mutton 

snappers (the last of which is the most common harvested fin-fish in Belize), the area is known for 

attracting whale sharks in a distinctive fashion that occurs in no other place in the world (SEA Belize, 

2010a).  In addition to the snapper and whale sharks, the MPA hosts five species of coral, three species of 

turtle, and over 25 different species of reef fish that amass to spawn annually (SEA Belize, 2010a).  The 

sandy beaches and clear water of the Silk Caye region are important features of the area, attracting 

substantial tourism from Placencia.  Tourism in Silk and Gladden Caye brings an average of 25 people to 

the caye per day, the majority coming between the months of March and April, tying in with the 

occurrence of the whale-sharks during those months.  In 2009 an estimated 8,580 tourists visited Silk 

Caye, generating over Bz$136,100, about US$68,000, in ticket revenue for SEA Belize (Bravo, 2010).  

Most of the tourists are daytime travelers that go snorkeling off of the Caye, but several kayaking tours 
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and sailing charters use the caye as an overnight stop (SEA Belize, 2010).  The smallest of the three 

Cayes, less than 2,000 m
2
 in size, Silk Caye itself is comprised of a barbeque grill, a picnic area with 

tables, and two toilets with a salt-water based treatment system.  There are no permanent settlements on 

the Caye. 

The water treatment system consists of a semi-anaerobic biodigester, a chlorine contact chamber, 

and a leach field (Figure 8).  As with Laughing Bird Caye, the wastewater treatment system on Silk Case 

uses salt water from the surrounding shoreline exclusively.  The semi-anaerobic biodigester is a 1,500 

liter Rotoplas drinking water tank, which is filled with plastic material to provide more surface area for 

the digestion.  The chlorine contact chamber is tablet based, a system most commonly used in the 

chlorination of pools in developed countries, and in water treatment systems in low- and middle-income 

countries (Orner et al., 2017).  However, it has been reported that the chlorine contact chamber is not 

currently functioning within the system (Prouty, 2016).  Unlike the WWTS at Little Water and Laughing 

Bird Caye, a leachfield was not constructed for Silk Caye.  Instead a pipe (listed as a soak away) feeds the 

treated wastewater directly into the ground without additional treatment. In addition, the soak away itself 

is less than 3 meters away from the nearest shoreline.  No vegetation has been planted near or on top of 

the area. 

Figure 8: Diagram of the Wastewater Treatment System at Silk Caye 

*Used with permission of Christine Prouty. 



www.manaraa.com

 
 

30 

 

3.2.4 Maintenance of the Three Systems 

SEA Belize is responsible for the day-to-day management of the three Cayes.  The responsibility 

includes collecting fees from the visiting tourists, patrolling the Cayes and the surrounding water, and 

working with the local government to improve the environmental management and local science research 

that occurs on the Cayes.  The responsibilities also include regular maintenance of the three wastewater 

treatment systems.  However, recent conversations with Luis Garcia, project manager for Eco-Friendly 

Solutions, indicated that little maintenance is performed (Garcia, 2016).  In the last six years, the 

anaerobic biodigesters in Laughing Bird Caye and Silk Caye have been purged by Eco-Friendly Solutions 

only twice, meaning excess buildup of biosolids within the systems is probably occurring.  Construction 

of the wastewater system on Little Water Caye was completed in the summer of 2015.  Once every two 

years the rangers of SEA Belize purchase a Septic Aid liquid to help in the digestion of waste by the 

bacteria (Garcia, 2016).   

There is a supply train to purchase replacements for broken or expended materials and parts from 

Eco-Friendly Solutions on the mainland.  However, these maintenance calls are made only after the 

system has failed and stopped functioning correctly.  In essence, the maintenance of the systems stops at 

the toilets.  Thus is the reason for this Thesis, to determine if the three WWTS are treating the wastewater 

produced at the Cayes to limits that do not impact the local environment or visitors.  Furthermore, if not 

being treated correctly, what changes could be made to ensure better treatment of the wastewater? 
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CHAPTER 4: METHODS 

 
4.1 Tests Performed at Laughing Bird, Little Water and Silk Caye 

 In December of 2015, Christy Prouty visited the Silk, Little Water and Laughing Bird Cayes for 

one month to collect data on the performance of the three systems. The specific variables that were 

investigated and quantified were water quality parameters influencing treatment efficiency (BOD and 

pH), levels of public health exposure to pathogens (E. coli and total coliforms), and concentrations of 

nutrients (both nitrogen and phosphorus) remaining in the recovered resources at Laughing Bird, Little 

Water, and Silk Cayes.  A specific list of activities and individual tests that were performed are provided 

in Appendix B. 

4.2 Modeling the Performance 

4.2.1 Model Description and Assumptions 

A mathematical model was developed by Christy Prouty and Jeffrey Cunningham to estimate the 

treatment efficiency of the systems, removal of biological oxygen demand, fecal solids, and nutrients—

particularly nitrogenous species. The model is based on the mass balances of six species: inert solids, 

fecal solids, bacterial biomass, soluble substrate (i.e. dissolved organic carbon), ammonium and nitrate. 

From these mass balances, the model predicts or estimates the effluent concentrations of these same six 

species. A list of the six chemical and solid species that were tracked by the model is presented in Table 

7. Furthermore, an illustrated description of the modeled mass balance of the WWTS is presented in 

Figure 9. 

To develop a tractable model, several assumptions were made based on observed conditions at 

the WWTS. For the sake of model simplicity, the WWTS was assumed to behave like a continuously 

stirred tank reactor (CSTR), in which all chemical and solid species are uniformly distributed within the 
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system.  The pH of the system was assumed below 8, making the conversion of aqueous ammonium to 

gaseous ammonia, and thus the gaseous effluent, negligible within the model. Dissolved oxygen was 

assumed to be present in small concentrations, making the WWTS a semi-anaerobic environment. The 

WWTS was assumed to be in steady state, meaning the chemical, physical, and biological parameters 

within the system are not changing over time. 

 

 

 

 

 

 

Table 7: Chemical and Solid Species that were Tracked in the Model 

Tracked Parameter Parameter Description 

𝑋𝑂𝑈𝑇
𝑖𝑛𝑡  Inert Solids Effluent Concentration 

𝑋𝑂𝑈𝑇
𝑓𝑒𝑐

 Fecal Solids Effluent Concentration 

𝑋𝑂𝑈𝑇
𝑏𝑎𝑐𝑡 Bacterial Solids Effluent Concentration 

𝑆𝑂𝑈𝑇 Effluent Soluble Substrate (BOD) Concentration 

𝑁𝐻4
𝑂𝑈𝑇 Effluent Ammonium Concentration (as N) 

𝑁𝑂3
𝑂𝑈𝑇 Effluent Nitrate Concentration (as N) 

 

As described in Chapter 3, inspections at Little Water, Laughing Bird, and Silk Caye found that 

the treatment processes following the semi-anaerobic biodigester (upflow clarifier, chlorine contact 

chamber, and drain fields) were in various conditions of operation; including disrepair (upflow clarifier) 

and/or unused (chlorine contact chamber).  Additionally, as discussed in Section 3.2.2, the upflow rock 

filter does not affect the nitrification/denitrification process. In regard to the drain fields installed on Little 

Water and Laughing Bird Caye, neither system was constructed in the typical mold described in Chapter 

2, making an accurate model of this treatment process difficult. Since the treatment efficiency of the 

additional treatment methods were inconclusive, the model system boundaries, and thus the predicted 

Figure 9: Mass Balance for the Modeled WWTS 

Influent Solids (𝑋𝐼𝑁
𝑖𝑛𝑡, 𝑋𝐼𝑁

𝑓𝑒𝑐
) 

Influent Substrate (𝑆𝐼𝑁) 

Effluent (gas fraction, considered negligible) 

Effluent (settled fraction) 

Effluent Solids (𝑋𝑂𝑈𝑇
𝑖𝑛𝑡 , 𝑋𝑂𝑈𝑇

𝑓𝑒𝑐 , 𝑋𝑂𝑈𝑇
𝑏𝑎𝑐𝑡) 

Effluent Soluble Substrate (𝑆𝑂𝑈𝑇) 

Influent Nitrogen (𝑁𝐻4
𝐼𝑁 ,𝑁𝑂3

𝐼𝑁) Effluent Nitrogen (𝑁𝐻4
𝑂𝑈𝑇,𝑁𝑂3

𝑂𝑈𝑇) 
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wastewater treatment, were based solely upon the treatment that occurs within the semi-anaerobic 

biodigesters.  

The microbiology of a semi-anaerobic digestion process, the removal of soluble BOD from the 

waste stream through waste stabilization, is complex and includes thousands of different bacterial species 

operating under variable chemical and physical conditions through several step-wise processes occurring 

in concert with one another (Husain, 1998; Amani et al., 2010; Chen et al., 2012). In general, the number 

of identifiable bacterial populations involved in the process is directly linked to the model complexity 

(Bernard et al., 2001). As one of our goals is to obtain a model that would be able to represent the semi-

anaerobic degradation process, while also being simple enough to be identifiable, the model assumes a 

homogenous bacterial population that has three functions: hydrolysis of the fecal matter, degradation of 

the soluble substrate, and nitrification. The bacterial population is therefore characterized by a single 

value of growth rate, death rate, and yield, but the rate coefficients for nitrification, fecal hydrolysis, and 

substrate utilization are different. 

The modeling of biological kinetics is a difficult task for which systematic methodology is still 

imprecise (Bernard et al., 2001).  For model simplicity, and in accordance with other studies on aerobic 

digestion modeling (Henze et al., 2000; Dinçer and Kargi, 2001; Schroeder and Wuertz, 2003; Ergas and 

Aponte-Morales, 2014), dual Monod kinetics were assumed for the rates of both substrate utilization and 

nitrification.  Additionally, bacterial growth is assumed to be directly linked to the concentration of the 

primary substrate of carbon, the concentration of which is expressed as BOD.   

4.2.2 Presentation of the Model  

The mass balance equations developed for this model are presented in Equations 5 through 10. 

For the sake of brevity, the mathematical developments are not detailed. A short description of the 

processes that occur in the mass balance equations is presented before each equation as an extension of 

the explanations given in Chapter 3. A table with the definition of the parameters used in the model is 

presented in Table 8. 
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Some of the solids entering the WWTS are inert. That might include sand and inorganic solids 

materials and also recalcitrant organic solids. The inert solids enter the WWTS, settle at the bottom of 

WWTS as settled solids, or exit the WWTS in the wastewater (𝑋𝑂𝑈𝑇
𝑖𝑛𝑡 ). 

𝑋𝑂𝑈𝑇
𝑖𝑛𝑡 =

𝑋𝑖𝑛
𝑖𝑛𝑡

(1+ 𝑘𝑠𝑒𝑡𝑡
𝑖𝑛𝑡 𝜃)

         [5] 

The fecal solids that enter the WWTS are composed of the portion that is able to be hydrolyzed 

by bacteria and the recalcitrant portion, inert solids, that is not hydrolyzed. The fecal solids that are able 

to be hydrolyzed enter the WWTS, settle at the bottom of WWTS as settled solids, undergo hydrolysis, or 

exit the WWTS in the wastewater (𝑋𝑂𝑈𝑇
𝑓𝑒𝑐

). The fecal solids release ammonium and soluble substrate 

during the hydrolysis process. 

𝑋𝑂𝑈𝑇
𝑓𝑒𝑐

=
𝑋𝑖𝑛

𝑓𝑒𝑐

(1+ 𝑘𝑠𝑒𝑡𝑡
𝑓𝑒𝑐

𝜃)+ (𝑘
ℎ𝑦𝑑𝑟𝑜
′𝑓𝑒𝑐

𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡𝜃)

      [6] 

The homogeneous bacteria within the WWTS grow by aerobically degrading the soluble BOD 

that enters the system (𝑆𝐼𝑁) and is released during the hydrolysis process.  The bacteria settle at the 

bottom of the WWTS as settled solids, die, or exit the WWTS in the wastewater (𝑋𝑂𝑈𝑇
𝑏𝑎𝑐𝑡).  

𝑋𝑂𝑈𝑇
𝑏𝑎𝑐𝑡 =

𝑆𝑖𝑛− 𝑆𝑜𝑢𝑡

(𝜃(1
𝑌)𝜇𝑚𝑎𝑥

𝑏𝑎𝑐𝑡(
𝑂2

𝑂2+𝑘𝑠
𝑂2

)(
𝑆𝑜𝑢𝑡

𝑆𝑜𝑢𝑡+ 𝑘𝑠𝑎𝑡
𝑠𝑢𝑏))− (𝛾𝑘ℎ𝑦𝑑𝑟𝑜

′𝑓𝑒𝑐
𝑋𝑜𝑢𝑡

𝑓𝑒𝑐
𝜃)

   [7] 

The soluble substrate, BOD, enters the WWTS, is released by the fecal solids during the 

hydrolysis process, and is consumed by the bacteria within the system.  The portion of soluble BOD that 

is not utilized and consumed by the bacteria exits the wastewater system as effluent soluble substrate 

(𝑆𝑂𝑈𝑇). 

𝑆𝑜𝑢𝑡 =
[(𝑘𝑠𝑎𝑡

𝑠𝑢𝑏)(𝜃𝑏+ 𝜃𝑘𝑠𝑒𝑡𝑡
𝑏𝑎𝑐𝑡+1)]

[𝜃𝜇𝑚𝑎𝑥
𝑏𝑎𝑐𝑡(

𝑂2

𝑂2+𝑘𝑠
𝑂2

)− 𝜃𝑏− 𝜃𝑘𝑠𝑒𝑡𝑡
𝑏𝑎𝑐𝑡−1]

      [8] 

The ammonium enters the WWTS through the urine and feces. The ammonium that enters 

through the feces is released during hydrolysis process.  Ammonium is assimilated by the bacteria within 
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the WWTS during cellular growth. Additionally, ammonium is converted to nitrate during the 

nitrification process. The portion of ammonium that is not assimilated by the bacteria, or converted to 

nitrate, exits in the wastewater stream (𝑁𝐻4
𝑂𝑈𝑇). 

𝑁𝐻4
𝑂𝑈𝑇 =

  
1

2

[
 
 
 
 

(𝑁𝐻4
+𝑖𝑛 − 𝑘𝑠𝑎𝑡

𝑁𝐻4
+

+ 𝜃𝑘′
ℎ𝑦𝑑𝑟𝑜
𝑓𝑒𝑐

𝑋𝑜𝑢𝑡
𝑓𝑒𝑐

𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡𝛼 − 𝜃𝜇𝑚𝑎𝑥

𝑏𝑎𝑐𝑡 (
𝑆

𝑆+𝑘𝑠𝑎𝑡
𝑠𝑢𝑏)(

𝑂2

𝑂2+𝑘𝑠𝑎𝑡
𝑂2

)𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡𝛽 − 𝜃 (

1

𝑌
)𝜇𝑚𝑎𝑥

𝑛𝑖𝑡 (
𝑂2

𝑂2+𝑘𝑠𝑎𝑡
𝑂2

)𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡) +

√

[
 
 
 (−𝑁𝐻4

+𝑖𝑛 + 𝑘𝑠𝑎𝑡

𝑁𝐻4
+

− 𝜃𝑘′
ℎ𝑦𝑑𝑟𝑜
𝑓𝑒𝑐

𝑋𝑜𝑢𝑡
𝑓𝑒𝑐

𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡𝛼 + 𝜃𝜇𝑚𝑎𝑥

𝑏𝑎𝑐𝑡 (
𝑆

𝑆+𝑘𝑠𝑎𝑡
𝑠𝑢𝑏) (

𝑂2

𝑂2+𝑘𝑠𝑎𝑡
𝑂2

)𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡𝛽 + 𝜃 (

1

𝑌
)𝜇𝑚𝑎𝑥

𝑛𝑖𝑡 (
𝑂2

𝑂2+𝑘𝑠𝑎𝑡
𝑂2

)𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡)

2

+4(𝑁𝐻4
+𝑖𝑛𝑘𝑠𝑎𝑡

𝑁𝐻4
+

+ 𝜃𝑘′
ℎ𝑦𝑑𝑟𝑜
𝑓𝑒𝑐

𝑋𝑜𝑢𝑡
𝑓𝑒𝑐

𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡𝛼𝑘𝑠𝑎𝑡

𝑁𝐻4
+

− 𝜃𝜇𝑚𝑎𝑥
𝑏𝑎𝑐𝑡 (

𝑆

𝑆+𝑘𝑠𝑎𝑡
𝑠𝑢𝑏) (

𝑂2

𝑂2+𝑘𝑠𝑎𝑡
𝑂2

)𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡𝛽𝑘𝑠𝑎𝑡

𝑁𝐻4
+

)
]
 
 
 

]
 
 
 
 

 [9] 

 

A small amount of nitrate enters the WWTS through the urine and feces. However, the majority 

of the nitrate produced is through the conversion of ammonium during the nitrification process. The 

nitrate in the influent, and produced in the denitrification process, exits in the wastewater stream 

(𝑁𝐻4
𝑂𝑈𝑇).  

𝑁𝑂3
𝑂𝑈𝑇 = 𝑁𝑂3

𝐼𝑁 +  𝜃𝜇𝑚𝑎𝑥
𝑛𝑖𝑡 (

𝑁𝐻4
+

𝑁𝐻4
++𝑘𝑠𝑎𝑡

𝑁𝐻4
+)(

𝑂2

𝑂2+𝑘𝑠𝑎𝑡
𝑂2

)𝑋𝑜𝑢𝑡
𝑏𝑎𝑐𝑡 (

1

𝑌
)   [10] 

Table 8: Parameter Name, Symbol, and Unit Used in Modeling Equations 

Influent Parameters  Biological Parameters 

Variable Name Variable Units 

 

Variable Name Variable Units 

Flow Rate 𝑄 L/day 

 

Maximum bacterial 

growth rate  
𝜇𝑚𝑎𝑥

𝑏𝑎𝑐𝑡 1/day 

Hydraulic retention time  𝜃 day 

 

Degradation rate 

coefficient (for BOD) 

𝜇𝑚𝑎𝑥
𝑏𝑎𝑐𝑡

𝑌
⁄  1/day 

Influent inert solids 

concentration 
𝑋𝐼𝑁

𝑖𝑛𝑡  mg/L 

 

Rate coefficient for the 

nitrification process 

𝜇𝑚𝑎𝑥
𝑛𝑖𝑡

𝑌
⁄  1/day 

Influent fecal solids 

concentration 
𝑋𝐼𝑁

𝑓𝑒𝑐
 

mg 

VSS/L 

 

Death rate 𝑏 1/day 

Influent substrate 

concentration 
𝑆𝐼𝑁 

mg 

BOD/L 

 

Yield 𝑌 
mg VSS / 

mg BOD 

Influent ammonium 

concentration 
𝑁𝐻4

𝐼𝑁 
mg/L as 

N 

 

Fecal hydrolysis rate 

coefficient 
𝑘ℎ𝑦𝑑𝑟𝑜

′𝑓𝑒𝑐
 L/mg*day 

Influent nitrate 

concentration 
𝑁𝑂3

𝐼𝑁 
mg/L as 

N 

 

Mass fraction of nitrogen 

in fecal solids 
α unitless 
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Table 8 (Continued) 

Oxygen concentration 𝑂2 mg/L 
 

Mass fraction of nitrogen 

in bacteria 
𝛽 unitless 

   

 

Stoichiometric coefficient 

of mg/L BOD released per 

mg/L bacterial solids 

hydrolyzed 

γ unitless 

Settling Constants 
 

Half-Saturation Rates 

Variable Name Variable Units 
 

Variable Name Variable Units 

Fecal solids settling 

constant 
𝑘𝑠𝑒𝑡𝑡

𝑓𝑒𝑐
 1/day 

 

Monod half-saturation 

coefficient for substrate 

utilization 
𝑘𝑠𝑎𝑡

𝑠𝑢𝑏 mg/L 

Inert solids settling 

constant 
𝑘𝑠𝑒𝑡𝑡

𝑖𝑛𝑡  1/day 

 

Monod half-saturation 

coefficient for oxygen 

utilization 
𝑘𝑠𝑎𝑡

𝑂2  mg/L 

Bacterial solids settling 

constant 
𝑘𝑠𝑒𝑡𝑡

𝑏𝑎𝑐𝑡  1/day 

 

Monod half-saturation 

coefficient for nitrification 

of ammonium 
𝑘𝑠𝑎𝑡

𝑁𝐻4 mg/L 

 

4.2.3 Parameter Estimation  

Default values for most of the parameters identified in Table 8 were obtained from the literature. 

The default values are the standard values that are used during the model calculations to obtain the 

effluent species through the mass balance equations. A complete list of the values used and the resources 

from which they were obtained is provided in Appendix C. However, several of the values were unable to 

be obtained through a thorough literature review and had to be estimated.  These parameters included 

oxygen concentration and gamma. 

Gamma is defined as the mg/L of BOD released per mg/L fecal solids hydrolyzed.  Using the 

stoichiometric equation for municipal solid waste C10H19O3N (Rittmann and McCarty, 2001), if all the 

COD within the feces were hydrolyzed to soluble substrate, the upper limit of gamma would be around 2 

mg BOD/mg fecal solids. However, as described in the previous section, influent fecal solids are divided 

into portions that are able hydrolyzed by bacteria and recalcitrant portions that are not hydrolyzed. The 

inert solids contribute to the overall COD, but do not contribute to the BOD. Furthermore, as described in 

Chapter 2, BOD measures only that portion of the biodegradable COD that is oxidized in 5 days. 
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Therefore, the practical value of gamma is considerably lower than 2. Since a standard number could not 

be found, the gamma default value was set to 1.0 mg BOD/mg fecal solids. 

The solids that settled to the bottom of the tank, and therefore removed from the effluent waste 

stream, was calculated as an equivalent concentration of nitrogen. Calculations were based upon 

stoichiometric equations for municipal solid waste (C10H19O3N, 7% nitrogen by mass) and bacterial cells 

(C5H7O2N, 12% nitrogen by mass) (Rittmann and McCarty, 2001). Fecal and bacterial solids within the 

WWTS were multiplied by the settling constants and the referenced percent nitrogen by mass to obtain 

the equivalent concentration of nitrogen. 

 The extent of the anaerobic or anoxic environment within the biodigesters has been identified as 

an uncertain parameter, and will be discussed in greater detail within Section 4.3.  However, the default 

value for the concentration of oxygen was set at 0.5 mg/L for the model equations. 

Due to the variation of the number of daily visitors and total system volume, each Caye had 

specific default values for the flow rate and hydraulic retention time.  The number of visitors was based 

upon SEA Belize Reports and interviews for Luis Garcia from Eco-Friendly Solutions (SEA Belize, 

2010a, 2010b; Garcia, 2016). The site-specific default values are presented in Table 9. In general, the 

flow rate per visitor was based upon each visitor using the toilet once and flushing one gallon (3.78 L) of 

water into the WWTS. 

Table 9: Default Parameters Used for Little Water, Laughing Bird, and Silk Caye 

 Little Water Caye  Laughing Bird Caye Silk Caye 

Number of Visitors 

per Day 
25 50 20 

Flow Rate per 

Visitor (L/day) 
3.78 3.78 3.78 

Flow Rate (L/day) 95 189 76 

Hydraulic Retention 

Time (days) 
31 7 16 

 

4.2.4 Corrections for Saline-Based WWTS 

The WWTS at Laughing Bird and Little Water Caye function on saltwater, as previously 

discussed in Chapter 3. However, the extent of saline concentration of the WWTS on the Cayes is 
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unknown.  The salinity of seawater is estimated as 3.5 percent by mass (Rozen and Belkin, 2005). An 

assumption was made that the overall concentration within the WWTS was 2 percent salinity since the 

data found in the literature was between fresh water (zero) and 4 percent salinity; making 2 percent 

salinity the median salinity of the data. The 2 percent salinity was used as the default salinity for the 

WWTS at Laughing Bird and Little Water Caye. With the use of 2 percent salinity, the default values 

identified in Appendix C also needed to be modified.  

 Nitrifying bacteria and the overall process of anaerobic biodegradation are sensitive to 

environmental factors, including the concentration of salinity (Moussa et al., 2006). The model equations 

presented above do not directly account for the change in performance due to the use of seawater.  Instead 

multiple parameters used in the equations are changed due to salt concentrations. These parameters that 

are sensitive to the concentration of salinity include: 𝑘𝑠𝑒𝑡𝑡
𝑖𝑛𝑡 , 𝜇𝑚𝑎𝑥

𝑏𝑎𝑐𝑡, 𝜇𝑚𝑎𝑥
𝑛𝑖𝑡 , 𝑏, 𝑘𝑠𝑒𝑡𝑡

𝑓𝑒𝑐
, 𝑘𝑠𝑎𝑡

𝑁𝐻4, 𝑌, 𝑘ℎ𝑦𝑑𝑟𝑜
′𝑓𝑒𝑐

, 𝑘𝑠𝑎𝑡
𝑁𝑂3, 

𝑘𝑠𝑎𝑡
𝑠𝑢𝑏, 𝑘𝑠𝑎𝑡

𝑂2 , and 𝑘𝑠𝑒𝑡𝑡
𝑏𝑎𝑐𝑡. 

A sensitivity analysis was performed on the parameters to determine which had the most 

significant impact to the overall model output, and thus needed to be changed for Laughing Bird and 

Little Water Caye. The overall procedure of a sensitivity analysis is presented in Section 4.3. For this 

particular analysis, parameters were varied from 50 percent to 150 percent of their default value.  The 

mass balance equations were run on the changed values to determine the variation of the four output 

parameters 𝑋𝑂𝑈𝑇
𝑓𝑒𝑐

, 𝑆𝑂𝑈𝑇, 𝑁𝐻4
𝑂𝑈𝑇, and 𝑁𝑂3

𝑂𝑈𝑇. The analysis indicated that the six parameters that had the 

greatest effect on predicted effluent were: 

 Maximum bacterial growth rate (𝜇𝑚𝑎𝑥
𝑏𝑎𝑐𝑡) 

 Maximum degradation rate for nitrification process (𝜇𝑚𝑎𝑥
𝑛𝑖𝑡 ) 

 Death Rate (𝑏) 

 Yield (𝑌) 

 Fecal hydrolysis rate coefficient (𝑘ℎ𝑦𝑑𝑟𝑜
′𝑓𝑒𝑐

) 

 Bacterial settling constant (𝑘𝑠𝑒𝑡𝑡
𝑏𝑎𝑐𝑡) 
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Calculations and results of the saline sensitivity analysis are presented in Appendix D. Of the six 

parameters identified as having a significant impact to the overall model output, four were identified from 

the literature as changing with increasing salinity. A list of the parameters and their interpreted values is 

presented in Table 10. 

Wu et al. (2008) indicated that the glucose utilization rate decreased by approximately 30% when 

increasing salinity from zero to 4 percent. Uygur and Kargi (2004) came to analogous conclusions. 

Interpreting these studies, the values used from the maximum BOD utilization rate (𝜇𝑚𝑎𝑥
𝑏𝑎𝑐𝑡) for Laughing 

Bird and Little Water Caye were decreased by 30% from the default value in Appendix C when 

increasing salinity from zero to 4 percent. Similarly, Wu et al. (2008) and Dinçer and Kargi (2001) 

indicated that the overall rate of nitrification is reduced with increasing salinity. Therefore, the maximum 

nitrification rate (𝜇𝑚𝑎𝑥
𝑛𝑖𝑡 ) was also decreased by 30 percent from the default value in Appendix C when 

increasing salinity from zero to 4 percent. 

Dinçer and Kargi (2001) found that increasing salinity from zero to 3 percent increased the death 

rate constant 220 percent in an activated sludge unit. Therefore the death rate constant was linearly 

increased by 220 percent from the default value at zero percent salinity to 3 percent, and the slope of the 

linear increase was extended to 4 percent salinity. 

Wu et al. (2008) found that the sludge volume index (SVI) increased by 55% when the salinity 

was increased from zero to 3 percent. Similarly Moussa et al. (2006) found that increased salt 

concentrations resulted in better settling characteristics of the nitrifying sludge. Therefore the bacterial 

settling constant (𝑘𝑠𝑒𝑡𝑡
𝑏𝑎𝑐𝑡) was linearly increased by 55 percent from the default value in Appendix C when 

increasing salinity from zero to 3 percent, and the slope of the settling constant was extended to 4 percent 

salinity. 

The dependence of bacterial yield and the fecal hydrolysis rate coefficient on salinity is 

inconclusive in the literature review and these parameters were left at their default values. Table 10 

indicates the default value of a 2 percent saline wastewater, and the corresponding changes to the default 
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values for Laughing Bird and Silk Caye, and are highlighted in bold.  These modified values were used 

during the sensitivity analysis discussed in Section 4.3. The effects of the salinity to the treatment 

efficiency of the WWTS are also further discussed in Section 4.3.2. 

Table 10: Parameters that Change with Salinity in Model for Laughing Bird and Silk Caye (Dinçer and 

Kargi, 2001; Wu et al., 2008; Abou-Elela et al., 2010; Ye and Zhang, 2010; J. P. Bassin et al., 2011) 

 

Low 

 
DEF 

 

High 

Salinity (%) 0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 4.00 

Maximum bacterial 

growth rate 
10.8 10.21 9.63 9.04 8.46 7.87 6.75 5.63 4.51 3.39 

Maximum growth 

rate (nitrification) 
0.9 0.73 0.67 0.62 0.57 0.52 0.53 0.48 0.43 0.37 

Death Rate 0.021 0.024 0.027 0.029 0.032 0.035 0.038 0.040 0.046 0.067 

Bacterial settling 

constant 
0.96 1.03 1.09 1.16 1.22 1.29 1.36 1.42 1.49 1.56 

 

4.3 Sensitivity Analysis 

4.3.1 Principles of Sensitivity Analysis 

Several parameters of the model have been identified as having unknown or varying values in the 

WWTS; in particular, parameters of the salinity concentration, oxygen concentration, and the number of 

visitors using the WWTS per day. A sensitivity analysis was performed on the parameters to determine 

which of the parameters caused significant impact to the output parameters within the model. 

The concentration of oxygen, and thus the extent of the anaerobic or anoxic environment, within 

the biodigesters has been identified as a parameter that is unknown in the system.  Likewise, the number 

of daily visitors, and thus the system flow rate, was identified as variable during the high and low tourist 

seasons.  Lastly, as previously discussed, Little Water and Laughing Bird Caye use sea water exclusively 

for toilet flushing. However, the extent of the salinity within the WWTS was uncertain. Therefore the 

parameters of salinity, oxygen, and number of visitors using the WWTS per day were explored in the 

sensitivity analysis. 

4.3.2 Process of the Sensitivity Analysis 

Cho et al. (2004) designed the process for the sensitivity analysis employed in this study. The 

sensitivity analysis was performed to understand how the changes in real-world parameters would affect 
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the simulation results and to evaluate the different scenarios identified within the three Cayes.  The 

salinity, oxygen concentration, and number of visitors were selected for the sensitivity analysis because 

these parameters either are known to vary or are difficult to estimate.  With all other parameters held at 

their default values, the target parameters were changed to the minimum and maximum expected values.  

The values for each parameter are indicated in Table 11. The model results were calculated using the 

mass balance equations presented in Section 4.2.2. The sensitivity analysis coefficient was determined 

using Equation 11. 

𝑆𝐴 (𝑖) =
|𝑅(𝑖𝑚𝑎𝑥)−𝑅(𝑖𝑚𝑖𝑛)|

𝑅(𝑖𝐷𝐸𝐹)
      [11] 

In Equation 11 i represents the target parameter, and 𝑆𝐴 (𝑖, 𝑛) is the sensitivity analysis 

coefficient for the model result to the target parameter i. 𝑅(𝑖𝑚𝑎𝑥) is the predicted model result of the 

maximum anticipated value of the target parameter, 𝑅(𝑖𝑚𝑖𝑛) is the predicted model result of the 

minimum anticipated value of the target parameter, and 𝑅(𝑖𝐷𝐸𝐹) the output of the parameters for the 

default value. 

Table 11: Parameters Used in the Sensitivity Analysis with the Minimum, Maximum and Default 

Values for Little Water, Silk, and Laughing Bird Caye 

Parameters 

Little Water Caye Laughing Bird Caye  Silk Caye 

MIN DEF MAX MIN DEF MAX MIN DEF MAX 

Number of Visitors per 

Day (#) 5 25 50 20 50 200 10 20 110 

Oxygen with the System  

(mg/L O2) 0.1 2.0 3.0 0.1 2.0 3.0 0.1 2.0 3.0 

Salinity of System  

(% by mass in water) 0 2 4 0 2 4 0 2 4 

 

4.4 Use of the Model and Sensitivity Analysis to Fulfill Thesis Objectives 

The mass-balance-based model was constructed to accomplish the first objective of this thesis, to 

predict the performance of the three WWTS based on available operational and water-quality input data.  

The sensitivity analysis accounts for the variations found in the behavioral data (number of visitors per 

day), operational (oxygen concentration), and water-quality input data (salinity concentration); and how 

they may affect the overall removal efficiencies of the WWTS. The effluent parameters of fecal solids, 
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soluble BOD, ammonium, and nitrate generated by the model were used to indicate key removal 

efficiencies of the WWTS. The predicted model outputs were compared to the gathered performance data 

(Objective 2) from the December 2015 sampling event. Similarly, the third objective of this thesis was 

accomplished by comparing the model outputs of the freshwater-based Little Water Caye to the saltwater-

based Laughing Bird and Silk Cayes.  Objective 3 was further assessed by comparing the results of the 

salinity sensitivity analysis to the model predictions if Laughing Bird and Silk Caye used freshwater. The 

sensitivity analysis was utilized to further understand the model-predicted values of the output parameters 

under the varying conditions that may be occurring in the WWTS. 

To fulfill Object 4 of the thesis, the predicted effluent removal efficiencies of Little Water Caye 

were compared to both the existing treatment systems in other locations and to the regulatory standards of 

the Florida Department of Environmental Protection (FDEP), Belize Department of Environment (DoE), 

and the World Health Organization (WHO) recommended guidelines for municipal wastewater.  The 

predicted removal efficiencies of Laughing Bird and Silk Caye were not compared to existing treatment 

systems in other locations because no saltwater-based decentralized WWTS could be found in a literature 

review. 
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CHAPTER 5: MODELING RESULTS AND DISCUSSION  
 

5.1 Predictions from the Model 

Variations of effluent fecal solids, soluble BOD, ammonium and nitrate that were predicted 

through the sensitivity analysis are presented in Table 12.  The calculations for the presented results are 

located in Appendix E. 

Table 12: Predicted Model Results of Effluent Parameters from the Sensitivity Analysis 

Default Values of the Effluent 

Wastewater 

𝑿𝑶𝑼𝑻
𝒇𝒆𝒄

 𝑺𝒐𝒖𝒕 𝑵𝑯𝟒
𝑶𝑼𝑻 𝑵𝑶𝟑

𝑶𝑼𝑻 

(mg/L) (mg BOD/L) ((mg/L as N) ((mg/L as N) 

Laughing Bird Caye 2.52 7.12 0.75 62 

Little Water Caye 0.05 3.48 0.23 63 

Silk Caye 1.98 6.58 0.71 62 

Number of Visitors  

Laughing Bird Caye 

High 3.61 10.1 1.2 62 

Low 1.98 6.6 0.7 62 

SA 65% 50% 65% 0% 

Little Water Caye 

High 0.10 3.56 0.23 63 

Low 0.01 3.41 0.25 62 

SA 190% 4% 6% 2% 

Silk Caye 
High 3.05 8.33 0.9 62 

Low 1.53 6.41 0.7 62 

 SA 23% 29% 28% 0% 

Oxygen Concentration  

Laughing Bird Caye 

High 2.52 182 0.7 62 

Low 3.61 7 46 26 

SA 43% 2465% 5970% 59% 

Little Water Caye 

High 0.05 24 0.3 63 

Low 0.05 3.28 2.6 61 

SA 3% 581% 1002% 2% 

Silk Caye 

High 1.98 6.15 0.6 62 

Low 2.37 119 37 31 

SA 20% 1714% 5161% 50% 
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Table 12 (Continued) 

Salinity  

Laughing Bird Caye 

High 2.63 9.27 0.8 62 

Low 2.00 3.54 0.2 63 

SA 25% 81% 72% 1% 

Silk Caye 

High 2.06 8.56 0.7 62 

Low 1.60 3.22 0.2 62 

SA 23% 81% 73% 1% 

 

The second tank in series at Little Water Caye was removed from the final WWTS model. The 

change is discussed in greater detail in the following sections. 

5.1.1 Effect of Number of Visitors 

Results from Silk Caye and Laughing Bird Caye indicate that varying the number of visitors from 

seasonal lows to highs has a moderate impact on the effluent fecal solids and soluble BOD in the effluent. 

The sensitivity analysis output indicated an approximate 23 to 65 percent variation of effluent fecal solids 

for Laughing Bird and Silk Caye from the default output results, and a 29 to 50 percent variation of 

soluble BOD in the effluent. Little Water Caye experienced a 190% increase in the effluent fecal solids 

and 4 percent increase in the soluble BOD. However, the effluent at the seasonal high was 0.10 mg/L 

fecal solids and 3.56 mg BOD/L.  Results suggest several key differences between Little Water Caye and 

Laughing Bird/Silk Caye.  

The HRT for Silk and Laughing Bird Caye at high visitor rates ranged from 3 to 7 days, 

respectively.  However, the HRT for the WWTS at Little Water Caye remained at over 31 days even 

during the seasonal high loads.  Due to the high HRT within the first partially nitrifying tank in the Little 

Water Caye WWTS, the soluble BOD in the effluent was removed to the extent that the microbial 

population in the second tank-in-series was unable to be sustained, negating any additional biological 

treatment the second tank could provide to the effluent.  Interpreting the variance in HRT, the WWTS at 

Silk and Laughing Bird Caye are underdesigned in terms of treatment efficiency required to meet effluent 

standards, discussed in Section 5.4.2, for the influent load per day experienced during seasonal high 
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periods of the year.  Likewise, considering the second tank is not used during high load periods, the 

WWTS at Little Water Caye is overdesigned. 

As discussed in previous sections, the water used to flush the toilets at Laughing Bird and Silk 

Cayes is retrieved from the nearby coast.  To account for this practice in the model, a salinity of 2 percent 

was assumed for the water within the WWTS.  Results of the model indicate that the WWTS was still 

able to reduce the BOD and fecal solids in the effluent wastewater but the biological hydrolysis and 

nitrification rates were reduced relative to the freshwater rates.  As a result of the reduced rates, the fecal 

solids were unable to be hydrolyzed and converted into substrate to the same extent before exiting the 

WWTS in the effluent.  Similarly, the soluble BOD was unable to be consumed to the same extent as a 

freshwater-based WWTS with a similar HRT.  The shorter HRT and reduced biological rates contributed 

to the lower overall quality of the effluent of Silk and Laughing Bird Cays in comparison to Little Water 

Caye. 

Effluent ammonia concentration of Laughing Bird and Silk Caye increased by upwards of 65 

percent with the reduction of HRT.  However, the ammonia concentration contributed less than 2 percent 

of the total nitrogen effluent concentration, making the change negligible to the overall reduction of 

nitrogen.  The model showed a 17 to 25 mg/L reduction of nitrogen from the effluent due to settled solids 

and the assimilation of the nitrogen into bacteria. However the model consistently predicts across the 

three WWTS an effluent nitrate concentration between 60 and 63 (mg/L as N, except at oxygen 

concentrations lower than   

5.1.2 Effect of Oxygen Concentration 

Graphical results of the predicted effluent fecal solids and BOD as a function of varying oxygen 

concentration are presented in Figure 10.  Results from the sensitivity analysis indicate that a minimum 

concentration of oxygen is required before the model can predict the effluent BOD concentration.  Under 

the minimum oxygen concentration the predicted soluble BOD within the WWTS (Sout) becomes a 

negative number, indicating the aerobic bacteria are unable to survive under the simulated conditions. The 
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minimum concentration was determined to be between 0.05 and 0.095 mg/L of oxygen.  Therefore the 

minimum oxygen concentration was taken as 0.1 mg/L. 

  

 
Figure 10: Comparison of Effluent BOD and Fecal Solids between Cayes by Varying Oxygen in the 

Model 

 

The oxygen concentration within the WWTS had the greatest effect on effluent BOD of the three 

parameters tested in the sensitivity analysis.  Effluent BOD concentrations were reduced from upwards of 

182 mg BOD/L to less than 7 mg BOD/L by increasing oxygen concentrations from 0.1 mg/L to 3.0 mg/L 

of O2. The concentration of effluent fecal solids did not significantly change with the variance of oxygen 

concentration.  Results indicate that the reduction of effluent BOD could be achieved with a constant flow 

of oxygen into the WWTS.  However graphical results indicate a horizontal asymptote where the increase 

in oxygen does not reduce effluent BOD to the same degree, signifying a diminishing rate of effluent 

BOD removal as oxygen concentrations increase. 

Figure 11 shows the effluent concentrations of ammonia, nitrate, fecal solids, and bacteria 

compared to the influent nitrogen removed by solids settling and the total nitrogen entering the system for 

Laughing Bird Caye by varying oxygen concentration.  The presented results are indicative of the overall 

results observed across the WWTS in all variations of the sensitivity analysis. Model predictions indicate 

that upwards of 70 percent of incoming nitrogen leaves the WWTS in the wastewater as the nitrate form.  

The nitrogen removed through the settled solids account for 25 percent of the total nitrogen.  The 

remaining 5 percent is split between the effluent fecal and bacterial solids, and the nitrogen absorbed 

during bacterial growth in the WWTS. 
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Figure 11: Total Nitrogen Output in Little Water Caye by Varying Oxygen in the Model 

 

5.2 Comparison of Data from the Model to Collected Field Data 

The results from the field tests conducted in December of 2015 were inconclusive in most of the 

parameters predicted in the model.  However, the field measurements did indicate that the ammonium in 

the WWTS was almost fully converted to nitrate in the effluent wastewater, between 85 and 95 percent 

conversion.  These results concur with the effluent data predicted by the model where upwards of 99 

percent of the total effluent nitrogen is in the form of nitrate; include the denitrification was not included 

in the predicted model. These results confirm that the WWTS are operating as a partially nitrifying 

environment.  Table 13 presents a comparison between the field data and the model predictions for the 

partition between ammonium and nitrate in the effluent wastewater.  

Table 13: Partition of Ammonia and Nitrate Concentrations in the 

Effluent Wastewater for Field Measurements and Model 

Predictions 

 

NH4-N 

(%) 

NO3-N 

(%) 

Silk Caye 
Measured 15 85 

Predicted 1 99 

Little Water 

Caye 

Measured 8 92 

Predicted 0 100 

Laughing Bird 

Caye 

Measured 5 95 

Predicted 1 99 
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5.3 Comparison of the Performance of Freshwater Based WWTS to Saltwater-based WWTS 

During the sensitivity analysis the saline concentration of Laughing Bird and Silk Caye was 

incrementally changed from freshwater (zero percent salinity) to 4 percent salinity.  The predicted model 

results are depicted in Figure 12. Due to the significant difference of HRT between the Cayes, a 

comparison between the freshwater-based Little Water Caye and the salt-water-based Cayes was not 

considered the optimal process to highlight the effects that salinity has on the effluent water quality.  

Results of the sensitivity analysis indicate that salinity had a significant effect on the predicted 

fecal solids and soluble BOD in the effluent. Predicted fecal solids in the effluent increased approximately 

60 percent from freshwater conditions to 4 percent salinity in Laughing Bird and Silk Caye.  The elevated 

fecal solid concentration in the effluent lead to seemingly contradictory results; the settling constant was 

increased with salinity and the effluent concentration of fecal solids increased.  Elevated salinity in the 

wastewater led to an increased water density, which would further cause the effluent fecal solids to float 

instead of settle.  Furthermore, as discussed in Section 2.7 of this thesis, high salt concentrations cause 

unstable flocs that reduce the settleability (João P. Bassin et al., 2011). However multiple studies have 

reported similar results as the ones predicted in the model (Dahl et al., 1997; Dinçer and Kargi, 2001; 

Uygur and Kargi, 2004; Moussa et al., 2006; Cortés-Lorenzo et al., 2015).   

  

 
Figure 12: Comparison of Effluent BOD and Fecal Solids between Cayes by Varying Salinity in the 

Model 

 

Moussa et al.(2006) proposed two mechanisms to explain why the settling rate may be greater 

under saline conditions. Increased water density leads to washout of lighter solids, leaving only the larger 
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flocs in the WWTS.  This process would lead to the selection of larger solids that have greater settling 

characteristics within the WWTS but also lead to higher solids concentrations in the effluent. Secondly, 

the increased solid size may also be caused by the electrostatic and hydrophobic interactions occurring 

between the flocs. Increased salinity in the wastewater could reduce the electric double layers surrounding 

the individual particles, and thereby reduce the overall repulsive force between them. The microbial 

aggregates would then be able to come close enough to form larger floc sizes. 

Effluent BOD concentration increased strongly with increasing salinity.  The increase in 

concentration is due to the major reduction of substrate-consuming-bacteria by cell-die-off. The model 

predicts that a significant increase in the cell die-off begins to occur at 2.4 percent salinity. This 

prediction concurs with the results reported by Wu et al. (2008), who observed a similar die-off occurring 

at 3 percent salinity.  This die-off could have significant effects on the effluent water quality.  The water 

salinity within the WWTS of Laughing Bird and Silk Caye was assumed to be 2 percent, a dilution from 

the urine combined with the 3.5 percent saline concentration of seawater.  However, small variances in 

the saline concentration above the assumed 2 percent saline concentration could significantly reduce the 

BOD treatment within the WWTS. 

5.4 Compare Performance of Freshwater Based WWTS to WWTS in the Literature 

5.4.1 Comparison of Results to Decentralized WWTS in Brazil 

The predicted effluent of the Little Water Caye WWTS was compared to 166 wastewater 

treatment plants operating in Brazil. Oliveira and von Sperling (2011) compared decentralized WWTS 

comprising of six different treatment processes: septic tank and anaerobic filter, facultative pond, 

anaerobic pond and facultative pond, activated sludge, UASB reactors alone, and UASB reactors 

followed by post-treatment.  A comparison between the results of the predicted effluent of Little Water 

Caye and the other WWTS is presented in Table 14. For comparison to the WWTS, the effluent total 

suspended solids (TSS) was calculated as the sum of the three calculate effluent solid fractions (inert, 

fecal, and bacterial) tracked in the model. 
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Table 14: Comparison Between the Removal Efficiency of the Predicted Effluent of Little Water 

Caye and Field Tests Conducted on Six Different Type of Decentralized WWTS in Brazil (Oliveira 

and von Sperling, 2011) 

 

Little 

Water 

Caye 

Septic 

Tank and 

Anaerobic 

Filter 

Facultative 

Pond 

Anaerobic 

Pond and 

Facultative 

Pond 

Activated 

Sludge 

UASB 

Reactors 

Alone 

USB and 

Post 

Treatment 

BOD Removal 

Efficiency (%) 
99 59 75 82 85 72 88 

TSS Removal 

Efficiency (%) 
91 66 48 62 76 67 82 

TN Removal 

Efficiency (%) 
22 24 44 39 50 -13 - 

 

Comparison between Little Water Caye and the decentralized WWTS in Brazil indicate that the 

predicted removal efficiencies of total suspended solids and soluble BOD at Little Water Caye are higher 

than the measured efficiencies of the WWTS.  However, the total nitrogen removal efficiency for Little 

Water Caye is the lowest of the WWTS at only 22 percent removal.  A possible explanation for the low 

removal of nitrogen could be that the model did not account for the denitrification that occurs in the semi-

anaerobic biodigester, and thus have over-estimated the effluent nitrogen.  However, the reduction of 

nitrogen from the denitrification would probably not significantly affect the overall results. 

The comparison between the WWTS illustrates that the predicted removal efficiency of BOD and 

TSS solids is most likely less in the actual measurement than predicted value from the model.  The 

nitrogen removal in the WWTS at Little Water Caye appears to be on par with the other WWTS.  

Considering the configuration of the WWTS at Little Water Caye most closely resembles a septic tank, 

the difference of 2 percent in the removal efficiency is reasonable.   

5.4.2 Comparison of Results to Regulatory Standards 

Predicted effluent water quality parameters of Little Water Caye were compared to the regulatory 

standards of the Florida Department of Environmental Protection (FDEP), Belize Department of 

Environment (DoE), and the recommended guidelines World Health Organization (WHO) for municipal 

wastewater. The results of the comparison are presented in Table 15. 

Predicted effluent BOD was found to be below regulatory standards for all three organizations.  

The TSS was similarly below standards for the Belize DoE and the WHO.  However, standards for the 
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nitrogen species and total nitrogen were significantly above regulatory levels.  Total nitrogen levels in the 

Little Water Caye are 20 times the standard set by the FDEP 

Table 15: Comparison of Predicted Effluent of Little Water Caye to Regulatory Effluent Standards of the 

FDEP and BoE, and Guidelines of the WHO 

 

Little Water 

Caye FDEP 

Belize DoE 

(Schedule II and II) 

WHO 

(Class I) 

BOD (mg/L) 3.5 5 30 2 

TSS (mg/L) 15 5 30 25 

Nitrate (as NO3
-
) 62.6 - 3 - 

Ammonia (as NH4
+
) 0.3 - 1 - 

Total Nitrogen (mg/L as N) 66.3 3 - 0.3 

 

.
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

The decentralized WWTS constructed on Laughing Bird Caye (LBC), Silk Caye (SC), and Little 

Water Caye (LWC) by Eco-Friendly Solutions were evaluated based on operational and water-quality 

input data to understand the environmental and public health impacts of the systems.  A model of the 

predicted outputs was composed and analyzed in Chapter 5 of this thesis.  Results of the model were 

compared to the saltwater-based systems of Laughing Bird and Silk Caye and compared against the 

decentralized WWTS found in the literature. 

Results indicate that the removal efficiency for three of the four predicted effluents were lower in 

the freshwater-based WWTS at LBC than the saltwater-based WWTS at SC and LBC. Oxygen was the 

most important parameter for the effluent concentrations of soluble BOD, ammonium, and nitrate. The 

number of visitors was the most significant parameter for the effluent concentration of fecal solids. 

The overall goal of this thesis is to provide recommendations to the currently installed WWTS in 

the Cayes to improve the environmental and public health impacts of the systems. 

6.1 Recommendations for the Modeling of the WWTS 

The objective of the constructed model for the WWTS in the Cayes of Belize was to estimate the 

treatment efficiency of the biological oxygen demand, effluent fecal solids, and nutrients—particularly 

nitrogenous species.  The analysis performed in this thesis was an initial iteration of the evaluation of the 

WWTS. However, several additional steps should be done to further develop a more accurate model of 

the WWTS.  Below are the major recommendations to promote the model accuracy. 

6.1.1 Include Effluent Treatment by the Soil Adsorption System (SAS) 

As stated in Chapter 2, the SAS is an important treatment component that utilizes the natural 

biochemical processes in the soil to assimilate and treat the various contaminants. As the wastewater 

effluent flows through the soil pores, it becomes treated by means of filtration, sedimentation, chemical 
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absorption, and biological reactions. In particular is the additional treatment of the nutrients where the 

vadose zone features several benefits that aid in the denitrification process and where the principal 

removal mechanisms of phosphate occurs. The WWTS at LBC and LWC were constructed with a form of 

a SAS that would further treat the wastewater before entering the surrounding ocean waters. 

Research has found that modeling the effluent treatment by the SAS and soil infiltration yield 

varying results that are difficult to predict (Beal et al., 2006).  The treatment systems constructed on the 

Cayes would be particularly difficult to test due to the original design of Eco-Friendly Solutions and the 

high infiltration rates of the sands that compose the soils on the Cayes. Due to these constraints, a valid 

set of equations for modeling were unable to be included in the confines of this Thesis. However, an 

individual study of the SAS on the Cayes would provide a more accurate indication of the treatment 

efficiencies of the WWTS. 

6.1.2 Produce Better Site-Specific Data 

Several important parameters were assumed from other decentralized WWTS in the rural areas of 

Brazil due to the incomplete water quality data obtained for the Cayes (Peters, 2003; Oliveira and von 

Sperling, 2011).  Although the data was considered sufficient for the initial evaluation of the model, the 

use of data that is not site specific leads to inherent inaccuracies in the predicted effluent quality. A 

system of calibration and validation steps should be included in the further development of a model. 

A model calibration is defined as the adaptation of the model to fit a certain set of information 

obtained from the WWTP under study (Petersen and Vanrolleghem, 2002). With a calibration procedure, 

all parameters of the model which can be based upon analytical measurements, and have significant 

influence to the simulation results, can be adjusted.  The goal of which is to fit the effluent water quality 

results with the observed WWTS characteristics within a defined accuracy (Langergraber et al., 2004). 

Similarly, validation is the process of demonstrating that the WWTS model can make sufficiently 

accurate predictions (Refsgaard, 1997).  Through the sensitivity analysis performed on in this thesis, the 

parameters that had significant impacts on the predicted effluent were determined for both the freshwater 
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and saltwater systems.  Table 16 presents a list of the suggested calibration and validation parameters for 

the site specific data. 

Table 16: Suggested Calibration and Validation Parameters for Modeling Little Water, Laughing 

Bird, and Silk Caye 
Little Water Caye 

(Freshwater WWTS) 

Laughing Bird and Silk Caye 

(Saltwater WWTS) 

Suggested Calibration 

Parameters 

Suggested Validation 

Parameters 
Suggested Calibration 

Parameters 
Suggested Validation 

Parameters 

 Oxygen 

Concentration 

 Influent Total 

Nitrogen 

 Effluent Ammonia 

and Nitrate 

Concentration 

 Number of Visitors 

 Salinity 

 Bacterial Settling 

Constant 

 Effluent 

 

Utilizing the listed parameters during the calibration and validation process would allow the site-

specific data obtained to be used and create a more accurate model. Langergraber et al. (2004) presented a 

9-phase guideline to performing a study with calibration and validation checks that could be used to 

create the procedures. 

6.1.3 Install Sampling Ports at Specific Locations on the WWTS 

As stated in the previous section, several important parameters were assumed due to the 

incomplete water quality data obtained.  Additionally, samples were not collected in the optimal locations 

within the WWTS to obtain the relevant site-specific data that would lead to more accurate predictions of 

the developed model.  The SEA Operation and Maintenance Recommendations Report details the data 

collection sample points (Prouty, 2015).  The installation of ‘sampling ports’ at strategic locations of the 

WWTS is recommended to obtain the necessary site-specific data.  At a minimum sampling port should 

be installed at the influent pipe, effluent pipe, and active zone of the semi-anaerobic biodigester.  The 

active zone for this recommendation is the treatment zone above the settleable solids and below the 

aerobic filter.  

6.2 Recommendations for Improving Effluent Water Quality of the WWTS 

The WWTS on the Cayes were constructed to mitigate the impacts of the wastewater produced by 

visitors on the general health of the pubic and the environment.  Considering the reports of the 

eutrophication affecting the coral reefs surrounding the Cayes, the WWTS have largely failed in at least 
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one aspect of their purpose.  The effluent water quality from the model confirms that high concentrations 

of nitrogen are entering the surrounding ocean habitat as ammonia and nitrate. 

In light of the failings of the WWTS, changes must be made to further protect the surrounding 

coral reef habitat from the excess nutrients of the wastewater. As stated in Chapter 3, significant 

constraints are placed on the WWTS constructed on the Cayes that affect the feasibility of the 

recommendations.  The Southern Environmental Association (SEA Belize) has repeatedly indicated that 

capital investment costs are a significant impediment to changes in the current WWTS.  Rangers from 

SEA Belize are responsible for the regular maintenance of the three wastewater treatment systems, 

representing a limited expertise in the maintenance of the systems. Additionally, environmental 

characteristics affect the type of system that is implemented. Erosion of the shoreline continuously occurs 

within the Cayes; meaning that a leachfield reconstructed in the center of the Caye will in time be next to 

the shoreline again.  With the exception of Little Water Caye, the average size of the Caye is less than 

4,000 m
2
; leaving little room for the WWTS and magnifying the affect any insects or odor would have on 

the general experience of the public.  Lastly, the soils of the Cayes are comprised of poorly graded sand, 

as with most beaches and coastlines, which can have horizontal infiltration rates of more than 100 meters 

per day (Houston et al., 1999).  The high infiltration rates indicate that the leachfield and SAS treatment 

may not have sufficient residence time to effectively treat the effluent wastewater before it is flushed out 

into the surrounding ocean environment. 

The challenge is to develop recommendations that are effective at minimizing the effect of the 

wastewater treatment systems as well as remaining feasible options in reference to the constraints. To 

achieve these two objectives, the recommendations have been separated into three input categories: Low, 

Medium, and High.  Table 17 present the recommendations in their specific category. The label of low, 

medium, and high indicate the required level of input to realize the recommendation.  The input includes 

the capital cost and labor of the change, the level of buy-in from the users of the system, and the resulting 

maintenance requirements. 
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Table 17: Recommendations for Laughing Bird, Little Water, and Silk Caye Based upon the 

Required Low, Medium, and High Input Parameters 

Low Input Requirements Medium Input Requirements High Input Requirements 

 Repair rock clarifier at LBC 

 Install drainfield at SC near 

the center of the Caye 

 Purge solids from the 

WWTS at least once a year 

 Provide training to the 

rangers on proper WWTS 

maintenance 

 Install Urine Separation 

Toilets 

 Replace WWTS for 

new, more efficient 

design 

 

6.2.1 Low Input Requirements 

The low input requirement recommendations are characterized by small changes that can be made 

to the WWTS that would improve the current treatment efficiency.  The improvements will help the 

systems to perform more efficiently, but will not be able to mitigate the main issues of nutrient 

eutrophication surrounding the WWTS.  However, the recommendations are easily obtainable with little 

capital costs (estimated at less than $2000) and a minimal amount of buy-in from the users of the WWTS. 

6.2.2 Medium Input Requirements 

The installation of urine separation toilets is a relatively simple solution to mitigate the effluent 

nutrient problem. Approximately 90 percent of nitrogen, and 50 percent of phosphorus, in black 

wastewater is from urine (Montangero and Belevi, 2007a).  A significant reduction of nutrients could be 

achieved by separating the urine at the source instead of all urine remaining diluted in the wastewater.  

Studies on urine separation in centralized and decentralized WWTS have shown a reduction of nutrient 

loads in the effluent and increased treatment efficiencies for BOD (Wilsenach and Van Loosdrecht, 2003; 

Halabi and Hamed, 2005; Guest et al., 2009). 

Additionally, urine separation is a method to create a resource recovery system (RR) from the 

already constructed WWTS.  Urine has been proven to be a low cost and effective fertilizer for crop 

production around the globe (Etter et al., 2011; Andersson, 2015; Ranasinghe et al., 2016).  Through the 

implementation of urine separation toilets, upwards of 1,700 gallons of liquid fertilizer could be produced 

per year at no additional cost. 
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The required capital cost of implementing a urine separation toilet system in the each Caye is 

minimal (an estimated cost of under $300 for the toilet and the required buckets).  However, the medium 

input requirement stems from the buy-in required by the users of the Cayes.  Boat Captains that visit the 

Cayes daily use small boats that are unable to transport large quantities of urine back to the mainland.  

Additionally rangers visit the caye approximately once a week, meaning there exist significant constraints 

on the two users that would need to participate in a urine separation program.   

To understand the required buy-in and scale of a urine separation system. Initial calculations of 

the urine production levels and means of removing the urine were created, and are presented in Appendix 

E.  The average human produces 30 – 80 ml of urine per hour (A.D.A.M. Medical Encyclopedia, 2017).  

Assuming that the average visitor stays at one of the Cayes for 3 hours, produces an average of 60 ml of 

urine per hour, and number of estimated visitors introduced in Chapter 4, Table 18 presents the 

accumulation of urine at the Cayes with 100 percent urine collection. 

Table 18: Accumulation of Urine (Gallons) by Implementing a Urine-Separation                                 

Toilets 

  

  

Laughing Bird Caye Little Water Caye Silk Caye 

Low Def High Low Def High Low Def High 

Number of 

Visitors 20 50 200 5 25 50 10 20 110 

Accumulation 

Per Hour 0.31 0.77 3.09 0.08 0.39 0.77 0.15 0.31 1.70 

Accumulation 

Per Day 0.9 2.3 9.3 0.2 1.2 2.3 0.5 0.9 5.1 

Accumulation 

Per Week 6 16 65 2 8 16 3 6 36 

 

During peak usage of the cayes, and using a 2.5 gallon container, boat captains would be required 

to transport a total of four, one, and two containers per day from Laughing Bird, Little Water, and Silk 

Caye, respectively.  This method seems to be the most feasible. If rangers were required to remove the 

urine once a week, upwards of fifteen 5-gallon buckets would need to be collected at Laughing Bird Caye 

alone during peak seasons.  However, it should be noted that when performed correctly, little to no insect 

or odor issues arise from the collection and storage of urine (Flores et al., 2009), meaning the 
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accumulation of containers could occur during peak times without negative impacts to the experience of 

the general public on the Cayes. 

6.2.3 High Input Requirements 

The highest input requirement would be the construction of a new WWTS at each Caye.  To 

effectively remediate the effluent nitrogen concentration, the new WWTS would require a combination of 

biological nitrification and denitrification.  Both nitrification and denitrification can be mediated by 

suspended-growth or attached-growth processes, which have been achieved in decentralized WWTS 

through the use of a sequencing batch reactor (SBR) (Oakley et al., 2010). 

Several alternative WWTS were considered for the implementation at the Cayes, many of the 

alternatives are described in Chapter 2.  However, the limited space constraints in conjunction with 

minimal expertise in maintenance reduced the viable options, and eventually lead to the SBR being 

considered the optimal choice for a new WWTS. SBRs have gained interest in the treatment of 

wastewater due to the simple configuration and flexibility as a treatment process (U.S. Environmental 

Protection Agency (USEPA), 1999).  Multiple studies have proven the success of SBRs in low- and 

medium-income countries to consistently treat wastewater to high effluent qualities (Al-Rekabi et al., 

2007; Nelson and Murray, 2008; Kalbar et al., 2012; Avery et al., 2014). Run as a batch or continuous 

operation, SBR use aeration and mixing to achieve high effluent qualities.  Under HRTs of 12 to 24 

hours, studies have shown total kjeldahl nitrogen removal efficiencies of 50 to 85 percent (Mahvi et al., 

2004; Al-Rekabi et al., 2007; Fernandes et al., 2013).  A list of advantages and disadvantages are 

provided in Table 19.  

Table 19: Advantages and Disadvantages of an Sequencing Batch Reactor (U.S. Environmental 

Protection Agency (USEPA), 1999) 

Advantages Disadvantages 

 Minimal footprint requirement, requiring 

only one reactor 

 Low HRT time 

 Operating flexibility and control to help in 

maximum removal of nutrients 

 Higher level of sophistication is required 

for the initial implementation compared to 

conventional systems 

 Higher level of maintenance 

 Potential plugging of aeration devices 
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Although an SBR WWTS would be capable of treating the high nitrogen concentrations in the 

effluent wastewater, the capital cost would be significant for the implementation. Additionally, high user 

buy-in would be required by the rangers to learn how to properly maintain the WWTS.  Electricity for the 

aeration pumps could come from a solar cell.   
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APPENDIX A: PHOTOGRAPHS OF THE WWTS AND GENERAL CONDITIONS OF THE 

THREE CAYES 

A-1.  Laughing Bird Caye 

 
Figure A-1: Semi-Anaerobic Biodigester (Black) and Upflow Rock Clarifier (White) at Laughing 

Bird Caye (Photo taken by Christine Prouty) 

 
Figure A-2: Upflow Rock Clarifier at Laughing Bird 

Caye (Photo taken by Christine Prouty) 

 

 
Figure A-3: Inside of Upflow Rock Clarifier 

at Laughing Bird Caye (Photo taken by 

Christine Prouty) 

 
Figure A-4: Leach Field with Native Plants at Laughing Bird Caye (Photo taken by Christine Prouty) 
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A-2. Little Water Caye 

  
Figure A-5: Semi-Anaerobic Biodigesters in Series at Little Water Caye (Photos taken by Christine 

Prouty) 

 

  
Figure A-6: Leach Field with Crushed Conch Shells at Little Water Caye (Photos taken by Christine 

Prouty) 

 

 
Figure A-7: Distribution System from Ranger Facility to WWTS at Little Water Caye 

(Photo taken by Christine Prouty) 
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A-3. Silk Caye  

 
Figure A-8: Wastewater Treatment System at Silk Caye (Photo taken by Christine Prouty) 

 
Figure A-9: Inside of Semi-Anaerobic 

Biodigester at Silk Caye (Photo taken by 

Christine Prouty) 

 
Figure A-10: PVC Pipe of Soak Away Close to 

Shoreline at Silk Caye (Photo taken by Christine 

Prouty) 

 

  
Figure A-11: Chlorine Contact Chamber (Without Tablets) at Silk Caye (Photos taken by 

Christine Prouty) 
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Figure A-12: Picture of Silk Caye (Photo taken by Christine Prouty) 
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APPENDIX B: LIST OF ACTIVITIES AND INDIVIDUAL TESTS PERFORMED AT 

LAUGHING BIRD, LITTLE WATER, AND SILK CAYE 

The information in this Appendix was taken from SEA Operation and Maintenance 

Recommendations Report by Christine Prouty (September 2015).  The writer does not claim any of the 

information in this Appendix is his original work.  Permission to republish the relevant information was 

given by Christine Prouty on June 4, 2016. 

B-1. Water Quality Parameters Tested  

 BOD5 

 Enterococci 

 E. coli 

 Total Coliforms 

 Nitrates (NO3
-
) 

 Phosphates (PO4
3-

) 

B-2. Wastewater Sampling Methods 

Separate grab samples were collected at the same time but in various locations along the 

wastewater treatment chain. The justification for this protocol was to give a step-wise picture of the 

change in water quality parameters throughout the treatment process. Consequently, the order of the 

sampling locations should be tested in such a way that the materials are used to sample the cleanest 

location first, continuing through to the dirtiest (closest to the influent) last. 

Wastewater samples were collected in a few different ways. First, if there was access to the top of 

the biodigester and/or filter, the ladle was used to dip out wastewater samples and pour the contents into 

sterilized 500 mL plastic water bottles. Afterwards, the samples were stored in an ice chest.  

In the instance when the volume of wastewater in the biodigester was too low, and could not be 

accessed from the top of the tank, a plastic bag with a sliding lock was secured over the evacuation valve. 
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This is the valve on the side of the tank that is responsible for emptying the digested sludge. The valve 

was slowly turned to the “open” position to evacuate the sludge until the gallon sized bag was filled 

approximately halfway full. The valve was then returned to the off position and the digested sludge was 

poured into the sterilized 500 mL plastic water bottles and stored on ice. 

Finally, given the situation when a leachfield pipe was exposed and provided the opportunity to 

directly collect the effluent, the sample bottle held under the exposed pipe without making contact. If 

space was a limiting factor, a sterilized bottle was cut in half and maneuvered under the exposed pipe to 

collect small amounts of the effluent to pour into another sterilized container. In a consistent manner as 

the other scenarios, the sample was then stored on ice. 

B-3. Sampling Limitations 

During the execution of the study, there were multiple factors that influenced the location, 

method, number, and volume of samples that were taken from each field site including (1) restricted 

access to parts of the systems, (2) limited resources at the laboratory to conduct the tests, and (3) recent 

sludge harvesting resulting in sample volumes too small for testing. 

B-4. Processing Samples 

When possible, the researcher requested that, for each sampling point, all of the water quality 

parameters listed be systematically tested using consistent procedures. However, occasional limitations 

were encountered resulting in alterations to the sampling protocol or laboratory tests that were conducted. 

Consequently, these changes were noted in the field log for each site. 

B-5. Data Collected 

Table B-1: Ammonia, Nitrate, and Total Nitrogen Collected at the Three Cayes in December 2015 

   
Considering 

Dilutions 
 

Considering 

Dilutions 
 

Considering 

Dilutions 

     

Sample Type 

Sample 

Location 

NH3-N 

(mg/L) 

NH3-N 

(mg/L) 

N03-N 

(mg/L) 

N03-N 

(mg/L) TN TN 

Silk Caye 

surface water SC 1A -0.07 -0.7 85.2 852 0.731 7.31 

  SC 1B -0.06 -0.6 76.6 766 2.25 22.5 
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Table B-1 (Continued) 

  SC 2A -0.05 -0.5 68.2 682 0.609 6.09 

        

  SC 2B -0.01 -0.1 81.6 816 0.826 8.26 

  SC 3A -0.05 -0.5 82.4 824 0.874 8.74 

  SC 3B -0.01 -0.1 95.4 954 0.585 5.85 

  SC 4A -0.05 -0.5 75.8 758 0.487 4.87 

  SC 4B -0.03 -0.3 84.8 848 0.707 7.07 

  SC 5A -0.01 -0.1 71.2 712 0.567 5.67 

  SC 5B -0.04 -0.4 78.2 782 8.85 88.5 

  SC 6A 0.01 0.1 80.2 802 1.42 14.2 

  SC 6B -0.03 -0.3 70.8 708 0.854 8.54 

wastewater SC 7A 911.31 9113.1 192.3 1923 6.44 64.4 

  SC 7B 361.07 3610.7 203.2 2032 8.04 80.4 

Little Water Caye 

brackish well LW 1A n/a n/a 77.9 779 2.21 22.1 

  LW 1B n/a n/a 75.9 759 1.34 13.4 

wastewater LW 3A 912.8 9128 99.6 996 3.94 39.4 

  LW 3B 996.43 9964.3 93.3 933 2.92 29.2 

Laughing Bird Caye 

surface water LB 1A 0 0 91.0 910 1.43 14.3 

  LB 1B 0.04 0.4 83.2 832 1.6 16 

  LB 2A -0.05 -0.5 92.8 928 1.49 14.9 

  LB 2B -0.02 -0.2 77.9 779 
-1.34, and   

-0.654 13.4 

  LB 3A -0.02 -0.2 76.8 768 1.00 10 

  LB 3B 0.02 0.2 82.1 821 3.46 34.6 

  LB 4A -0.01 -0.1 84.8 848 1.1 11 

  LB 4B -0.03 -0.3 83.5 835 1.37 13.7 

wastewater LB 8A 651.67 6516.7 1016.2 10162 1.15 1150 

  LB 8B 381.83 3818.3 974.3 9743 0.299 299 

  LB 9A 626.39 6263.9 1209.6 12096 0.211 211 

  LB 9B 464.02 4640.2 1247.6 12476 0.275 275 
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APPENDIX C: PARAMETER NAME, SYMBOL, UNIT, VALUE AND RESOURCE USED IN 

MODELING EQUATIONS FOR THE SENSITIVITY ANALYSIS 

Table C-1: Parameter Name, Symbol, Unit, Value and Resource Used in Modeling Equations for 

the Sensitivity Analysis 

Variable Name Variable Value Units Source 

Influent inert concentration 
 

60 mg/L (Rittmann and McCarty, 2001) 

Inert settling constant 

 

0.1 1/day (Woo, 2012) 

Hydraulic retention time 
 

Variable day Calculated from model 

Influent fecal concentration 
 

100 mg VSS/L (Rittmann and McCarty, 2001) 

Fecal settling constant 
 

0.96 1/day (Struck et al., 2008) 

Yield Y 0.4 
mg VSS / mg 

BOD 
(Rittmann and McCarty, 2001) 

Fecal hydrolysis rate coefficient 
 
 

0.82 L/mg*day (Bhunia and Stenstrom, 1986) 

Influent substrate concentration   420 mg BOD/L 
(Rittmann and McCarty, 

2001;WERF, 2009) 

Substrate half saturation 
 
 

25 mg/L 
(Ergas and Aponte-Morales, 

2014) 

Bacterial settling constant   0.96 1/day (Struck et al., 2008) 

Flow Rate Q variable L/day Calculated from model 

Maximum bacterial growth rate 
 

10.8 1/day (Rittmann and McCarty, 2001) 

Portion of the Rate coefficient 

for the nitrification process  

 

0.9 1/day 
(Ergas and Aponte-Morales, 

2014) 

Death rate b 0.13 1/day 
(Ergas and Aponte-Morales, 

2014) 

Influent ammonia concentration 
 

78 mg/L 
(Oliveira & von Sperling 

2011) 

Monod half-saturation 

coefficient for nitrification of 

ammonium  

 

1.1 mg/L (Ghimire, 2012) 

Influent nitrate concentration 
 

3 mg/L (Henze and Comeau, 2008) 

Monod half-saturation 

coefficient for nitrification of 

ammonium  

 

0.26 mg/L (Ghimire, 2012) 

Oxygen concentration 
 

2 mg/L ASSUMED 
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. 

Table C-1 (Continued) 

Monod half-saturation 

coefficient for oxygen 

utilization  

 
 

0.37 mg/L (Ghimire, 2012) 

Stoichiometric coefficient α 0.07 unitless (Rittmann and McCarty, 2001) 

Mass fraction of nitrogen in 

fecal solids 
β 0.12 unitless (Rittmann and McCarty, 2001) 

Stoichiometric coefficient of 

mg/L BOD released per mg/L 

bacterial solids hydrolyzed  

ɣ 1 unitless ASSUMED 
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APPENDIX D: CALCULATIONS AND RESULTS OF THE SALINE SENSITIVITY ANALYSIS 
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Table D-1: Calculations of the Saline Sensitivity Analysis 

Variable:
Low

(50%)

High

(150%)

0.05 0.15

Effluent inert Solids concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT înt 49.0 35.8 mg/L

Effluent Fecal Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT f̂ec 2.76 2.76 mg/L

2.76 2.76 Solver equation

Effluent substrate concentration
Variable

Equation

Low

(50%)

High

(150%)

S_OUT 4.20 4.20 mg BOD/L

Effluent bacterial Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT^bact 28.65 28.65 mg VSS/L

Equations for Nitrogen Cunningham: Dual monad kinetics

Effluent ammonia concentration
Variable

Equation

Low

(50%)

High

(150%)

NH4_OUT 132.027 132.027 mg/L

Effluent nitrate concentration
Variable

Equation

Low

(50%)

High

(150%)

NO3_OUT 242 242 mg/L  
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Table D-1 (Continued) 

Variable:
Low

(50%)

High

(150%)

0.45 1.35

Effluent inert Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT înt 41.4 41.4 mg/L

Effluent Fecal Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT f̂ec 2.76 2.76 mg/L

2.76 2.76 Solver equation

Effluent substrate concentration
Variable

Equation

Low

(50%)

High

(150%)

S_OUT 4.20 4.20 mg BOD/L

Effluent bacterial Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT^bact 28.65 28.65 mg VSS/L

Equations for Nitrogen CB33ningham: Dual monad kinetics

Effluent ammonia concentration
Variable

Equation

Low

(50%)

High

(150%)

NH4_OUT 73.9 190.8 mg/L

Effluent nitrate concentration
Variable

Equation

Low

(50%)

High

(150%)

NO3_OUT 120.6 365.0 mg/L  
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Table D-1 (Continued) 

Variable:
Low

(50%)

High

(150%)

0.48 1.44

Effluent inert Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT înt 41.4 41.4 mg/L

Effluent Fecal Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT f̂ec 2.90 2.62 mg/L

2.90 2.62 Solver equation

Effluent substrate concentration
Variable

Equation

Low

(50%)

High

(150%)

S_OUT 4.20 4.20 mg BOD/L

Effluent bacterial Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT^bact 28.96 28.36 mg VSS/L

Equations for Nitrogen Cunningham: Dual monad kinetics

Effluent ammonia concentration
Variable

Equation

Low

(50%)

High

(150%)

NH4_OUT 133.4 130.8 mg/L

Effluent nitrate concentration
Variable

Equation

Low

(50%)

High

(150%)

NO3_OUT 245 240 mg/L  
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Table D-1 (Continued) 

Variable:
Low

(50%)

High

(150%)

0.12 0.36

Effluent inert Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT înt 41.4 41.4 mg/L

Effluent Fecal Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT f̂ec 4.89 1.92 mg/L

4.89 1.92 Solver equation

Effluent substrate concentration
Variable

Equation

Low

(50%)

High

(150%)

S_OUT 4.20 4.20 mg BOD/L

Effluent bacterial Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT^bact 28.00 28.90 mg VSS/L

Equations for Nitrogen Cunningham: Dual monad kinetics

Effluent ammonia concentration
Variable

Equation

Low

(50%)

High

(150%)

NH4_OUT 129.2 133.1 mg/L

Effluent nitrate concentration
Variable

Equation

Low

(50%)

High

(150%)

NO3_OUT 237 245 mg/L  
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Table D-1 (Continued) 

 

Variable:
Low

(50%)

High

(150%)

0.185 0.555

Effluent inert Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT înt 41.4 41.4 mg/L

Effluent Fecal Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT f̂ec 2.57 2.95 mg/L

2.57 2.95 Solver equation

Effluent substrate concentration
Variable

Equation

Low

(50%)

High

(150%)

S_OUT 3.83 4.59 mg BOD/L

Effluent bacterial Solids Concentration
Variable

Equation

Low

(50%)

High

(150%)

X_OUT^bact 31.16 26.50 mg VSS/L

Equations for Nitrogen Cunningham: Dual monad kinetics

Effluent ammonia concentration
Variable

Equation

Low

(50%)

High

(150%)

NH4_OUT 153.5 115.1 mg/L

Effluent nitrate concentration
Variable

Equation

Low

(50%)

High

(150%)

NO3_OUT 287 208 mg/L  
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Table D-2: Results from Saline Sensitivity Analysis 

.
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APPENDIX E: CALCULATIONS OF THE SENSITIVITY ANALYSIS 
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Laughing Bird Caye

Variable: Number of Visitors per Day Reference 50

Low High
20 40 60 80 100 120 140 160 180 200

Influent to Anaerobic Biodigestor 

∀Blackwater/Flush = 1 gal/flush = 3.78 L/flush

Flush/visitor = 1

Reference

Qinfluent = 75.6 151.2 226.8 302.4 378 453.6 529.2 604.8 680.4 756 189 L/day

Qeffluent = 75.6 151.2 226.8 302.4 378 453.6 529.2 604.8 680.4 756 189 L/day

∀Tank = 1500 L

0 0

0 0

fL = 0.85 0

0 0 Reference

HRT = 17 8 6 4 3 3 2 2 2 2 7 days

405 202 135 101 81 67 58 51 45 40 162 hours

Effluent Inert Solids concentration
Variable

Equation

Low High Reference

X_OUT înt 22.3 32.6 38.4 42.2 44.9 46.8 48.4 49.6 50.5 51.3 35.8 mg/L

Effluent fecal Solids concentration
Variable

Equation

Low High Reference

X_OUT f̂ec 1.98 2.39 2.63 2.80 2.96 3.10 3.23 3.36 3.49 3.61 2.52 mg/L

1.98 2.39 2.63 2.80 2.96 3.10 3.23 3.36 3.49 3.61 2.52 Solver equation

Effluent substrate concentration
Variable

Equation

Low High Reference

S_OUT 6.58 6.94 7.31 7.68 8.07 8.46 8.87 9.28 9.71 10.14 7.12 mg BOD/L

Effluent bacterial Solids concentration
Variable

Equation

Low High Reference

X_OUT^bact 8.21 16.14 23.48 30.26 36.53 42.34 47.75 52.79 57.49 61.88 19.89 mg VSS/L

Equations for Nitrogen  

Effluent ammonia concentration
Variable

Equation

Low High Reference

NH4_OUT 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 1.2 0.8 mg/L

Effluent nitrate concentration
Variable

Equation

Low High Reference

NO3_OUT 62 62 62 62 62 62 62 62 62 62 62 mg/L

Settled Solids
SS 23.7 22.4 21.4 20.5 19.7 19.0 18.3 17.7 17.1 16.6 21.9 mg/L

Bacterial Death
Death 0.58 0.57 0.55 0.53 0.52 0.50 0.48 0.47 0.45 0.44 0.56 mg/L

Table E-1: Calculations of the Sensitivity Analysis 
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Table E-1 (Continued) 
Laughing Bird Caye

Variable: Salinity

Low Reference High

Salinity 0.005 0.405 0.805 1.205 1.605 2.01 2.405 2.805 3.205 4

Maximum growth rate 10.8 10.21 9.63 9.04 8.46 7.87 6.75 5.63 4.51 3.39

Yield 0.4 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4

Maxium Growth Rate (nitrogen) 0.9 0.73 0.67 0.62 0.57 0.52 0.53 0.48 0.43 0.37

Death Rate 0.021 0.024 0.027 0.029 0.032 0.03 0.038 0.040 0.0460 0.0670

Fecal hydrolysis rate coefficient 0.24 0.240 0.240 0.240 0.240 0.24 0.240 0.240 0.240 0.24

Bacterial settling constant 0.96 1.03 1.09 1.16 1.22 1.29 1.36 1.42 1.49 1.56

Influent to Anaerobic Biodigestor 1

∀Blackwater/Flush = 1 gal/flush = 3.78 L/flush

Flush/visitor = 1

Qinfluent = 189 L/day

Qeffluent = 189 L/day

0 0

∀Tank = 1500 L

fL = 0.85

HRT = 7 days

162 hours

Effluent Inert Solids concentration
Variable

Equation

Low Reference High

X_OUT înt 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 mg/L

Effluent fecal Solids concentration
Variable

Equation

Low Reference High

X_OUT f̂ec 2.00 2.10 2.21 2.31 2.42 2.52 2.63 2.74 2.87 3.11 mg/L

2.00 2.10 2.21 2.31 2.42 2.52 2.63 2.74 2.87 3.11 Solver equation

Effluent substrate concentration
Variable

Equation

Low Reference High

S_OUT 3.54 4.04 4.62 5.30 6.12 7.12 9.27 12.82 19.80 40.80 mg BOD/L

Effluent bacterial Solids concentration
Variable

Equation

Low Reference High

X_OUT^bact 26.34 24.76 23.35 22.08 20.93 19.89 18.88 17.92 16.87 15.25 mg VSS/L

Equations for Nitrogen  

Effluent ammonia concentration
Variable

Equation

Low Reference High

NH4_OUT 0.24 0.33 0.40 0.48 0.59 0.75 0.78 1.03 1.50 2.87 mg/L

Effluent nitrate concentration
Variable

Equation

Low Reference High

NO3_OUT 63 63 62 62 62 62 62 62 62 62 mg/L

Settled Solids
SS 21.4 21.5 21.6 21.7 21.8 21.9 21.9 21.9 21.6 20.6 mg/L

Bacterial Death
Death 2.77 2.61 2.46 2.32 2.20 2.09 1.99 1.89 1.78 1.60 mg/L  
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Table E-1 (Continued) 
Little Water Caye

Variable: Number of Visitors per Day Reference 25

Low High

5 7 12 17 22 27 32 37 42 50

Influent to Anaerobic Biodigestor 1

∀Blackwater/Flush = 1 gal/flush = 3.78 L/flush

Flush/visitor = 1

Reference

Qinfluent = 18.9 26.46 45.36 64.26 83.16 102.06 120.96 139.86 158.76 189 94.5 L/day

Qeffluent = 18.9 26.46 45.36 64.26 83.16 102.06 120.96 139.86 158.76 189 94.5 L/day

∀Tank_1 = 3500 L

∀Tank_2 = 1200 L

fL = 0.85

HRT_1 = 157 112 66 46 36 29 25 21 19 16 31 days

3778 2698 1574 1111 859 700 590 511 450 378 756 hours

HRT_2 = 54 39 22 16 12 10 8 7 6 5 11 days

1295 925 540 381 294 240 202 175 154 130 259 hours

Effluent Inert Solids concentration
Variable

Equation

Biodigestor 1

Low High

X_OUT înt 3.6 4.9 7.9 10.7 13.1 15.3 17.3 19.2 20.9 23.3 14.5 mg/L

Biodigestor 2

Low High

X_OUT înt 0.6 1.0 2.4 4.1 5.9 7.7 9.4 11.1 12.7 15.1 7.0 1/day

Effluent fecal Solids concentration
Variable

Equation

Biodigestor 1

Low High

X_OUT f̂ec 0.34 0.40 0.48 0.52 0.55 0.57 0.59 0.60 0.61 0.62 0.56 mg/L

0.34 0.40 0.48 0.52 0.55 0.57 0.59 0.60 0.61 0.62 0.56 Solver equation

Biodigestor 2

Low High

X_OUT f̂ec 0.0065 0.0105 0.0213 0.032 0.043 0.054 0.065 0.076 0.086 0.103 0.050 1/day

0.0065 0.0105 0.0213 0.032 0.043 0.054 0.065 0.076 0.086 0.103 0.050 Solver equation

Effluent substrate concentration
Variable

Equation

Biodigestor 1

Low High

S_OUT 3.42 3.43 3.45 3.47 3.50 3.52 3.54 3.56 3.59 3.62 3.51 mg BOD/L

Biodigestor 2

Low High

S_OUT 3.46 3.49 3.55 3.62 3.69 3.75 3.82 3.89 3.96 4.07 3.73 1/day

Effluent bacterial Solids concentration
Variable

Equation

Biodigestor 1

Low High

X_OUT^bact 1.08 1.53 2.68 3.83 4.97 6.10 7.22 8.33 9.42 11.15 5.65 mg VSS/L

Biodigestor 2

Low High

X_OUT^bact 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.03 -0.01 mg BOD/L

Equations for Nitrogen  

Effluent ammonia concentration
Variable

Equation

Biodigestor 1

Low High

NH4_OUT 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 mg/L

Biodigestor 2

Low High

NH4_OUT 0.25 0.25 0.26 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.27 mg/L

Effluent nitrate concentration
Variable

Equation

Biodigestor 1

Low High

NO3_OUT 62 62 62 62 63 63 63 63 63 63 63 mg/L

Biodigestor 2

Low High

NO3_OUT 62 62 62 62 63 63 63 63 63 63 63 mg/L

Settled Solids
Biodigestor 1

SS 23.1 22.9 22.4 22.1 21.8 21.6 21.4 21.3 21.1 20.9 21.7 mg/L

Biodigestor 2

SS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 mg/L

Total

SS 23.2 22.9 22.4 22.1 21.8 21.6 21.5 21.3 21.1 20.9 21.7 mg/L

Bacterial Death

Death_Tank 1 0.00 2.69 2.74 2.77 2.77 2.77 2.77 2.76 2.76 2.74 2.77 mg/L

Death_Tank 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 mg/L  
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Table E-1 (Continued) 
Little Water Caye

Variable:

Low High
0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 3

Influent to Anaerobic Biodigestor 1

∀Blackwater/Flush = 1 gal/flush = 3.78 L/flush

Flush/visitor = 1

Qinfluent = 94.5 L/day

Qeffluent = 94.5 L/day

∀Tank_1 = 3500 L

∀Tank_2 = 1200 L

0 0

fL = 0.85 0

HRT_1 = 31 days

756 hours

HRT_2 = 11 days

259 hours

Effluent Inert Solids concentration
Variable

Equation

Biodigestor 1

Low High

X_OUT înt 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 mg/L

Biodigestor 2

Low High

X_OUT înt 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 1/day

Effluent fecal Solids concentration
Variable

Equation

Biodigestor 1

Low High

X_OUT f̂ec 0.54 0.57 0.57 0.57 0.57 0.56 0.56 0.56 0.56 0.56 mg/L

0.59 0.57 0.57 0.57 0.57 0.56 0.56 0.56 0.56 0.56 Solver equation

Biodigestor 2

Low High

X_OUT f̂ec 0.0472 0.0503 0.0500 0.0499 0.0498 0.0498 0.0498 0.0498 0.0498 0.0000 1/day

0.0482 0.0502 0.0500 0.0499 0.0498 0.0498 0.0498 0.0498 0.0498 0.0498 Solver equation

Effluent substrate concentration
Variable

Equation

Biodigestor 1

Low High

S_OUT 23.84 6.25 4.72 4.15 3.85 3.67 3.54 3.45 3.38 3.30 mg BOD/L

Biodigestor 2

Low High

S_OUT 26.51 6.68 5.03 4.41 4.09 3.90 3.76 3.67 3.59 3.51 mg BOD/L

Effluent bacterial Solids concentration
Variable

Equation

Biodigestor 1

Low High

X_OUT^bact 5.32 5.62 5.64 5.64 5.65 5.65 5.65 5.65 5.65 5.65 mg VSS/L

Biodigestor 2

Low High

X_OUT^bact -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 mg BOD/L

Equations for Nitrogen  

Effluent ammonia concentration
Variable

Equation

Biodigestor 1

Low High

NH4_OUT 2.8 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 mg/L

Biodigestor 2

Low High

NH4_OUT 2.8 0.6 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 mg/L

.
Variable

Equation

Biodigestor 1

Low High

NO3_OUT 60.8 62.5 62.6 62.6 62.6 62.6 62.6 62.6 62.6 62.6 mg/L

Biodigestor 2

Low High

NO3_OUT 60.7 62.5 62.5 62.6 62.6 62.6 62.6 62.6 62.6 62.6 mg/L

Settled Solids
Biodigestor 1

SS 20.4 21.6 21.6 21.7 21.7 21.7 21.7 21.7 21.7 21.7 mg/L

Biodigestor 2

SS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 mg/L

Total

SS 20.4 21.6 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 mg/L

Bacterial Death

Death_Tank 1 2.61 2.76 2.77 2.77 2.77 2.77 2.77 2.78 2.78 2.78 mg/L

Death_Tank 2 -0.004888 -0.0007883 -0.000564205 -0.0004858 -0.00045 -0.000421855 -0.00041 -0.00039 -0.00039 -0.00037 mg/L  
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Table E-1 (Continued) 
Silk Caye

Variable: Reference 20

Low High
10 21 32 43 54 65 76 87 98 110

Influent to Anaerobic Biodigestor 1

∀Blackwater/Flush = 1 gal/flush = 3.78 L/flush

Flush/visitor = 1

Reference

Qinfluent = 37.8 79.38 120.96 162.54 204.12 245.7 287.28 328.86 370.44 415.8 75.6 L/day

Qeffluent = 37.8 79.38 120.96 162.54 204.12 245.7 287.28 328.86 370.44 415.8 75.6 L/day

∀Tank = 1500 L

fL = 0.8271813 0

0 0 Reference

HRT = 33 16 10 8 6 5 4 4 3 3 16 days

788 375 246 183 146 121 104 91 80 72 394 hours

Effluent Inert Solids concentration
Variable

Equation

Low High Reference

X_OUT înt 14.0 23.4 29.6 34.0 37.3 39.9 41.9 43.6 44.9 46.2 22.7 mg/L

Effluent fecal Solids concentration
Variable

Equation

Low High Reference

X_OUT f̂ec 1.53 2.03 2.28 2.45 2.58 2.69 2.79 2.88 2.96 3.05 2.00 mg/L

1.53 2.03 2.28 2.45 2.58 2.69 2.79 2.88 2.96 3.05 2.00 Solver equation

Effluent substrate concentration
Variable

Equation

Low High Reference

S_OUT 6.41 6.61 6.81 7.02 7.22 7.43 7.65 7.86 8.08 8.33 6.59 mg BOD/L

Effluent bacterial Solids concentration
Variable

Equation

Low High Reference

X_OUT^bact 4.17 8.86 13.39 17.73 21.88 25.84 29.63 33.26 36.74 40.37 8.44 mg VSS/L

Equations for Nitrogen  

Effluent ammonia concentration
Variable

Equation

Low High Reference

NH4_OUT 0.71 0.71 0.72 0.74 0.76 0.79 0.82 0.85 0.88 0.91 0.71 mg/L

Effluent nitrate concentration
Variable

Equation

Low High Reference

NO3_OUT 61.5 61.9 62.1 62.2 62.2 62.3 62.3 62.3 62.3 62.3 61.9 mg/L

Settled Solids
SS 24.6 23.6 22.8 22.2 21.6 21.1 20.6 20.2 19.7 19.3 23.6 mg/L

.

Bacterial Death
Death 0.57 0.58 0.58 0.57 0.56 0.55 0.54 0.53 0.52 0.50 0.58 mg/L  
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Table E-1 (Continued) 
Silk Caye

Variable:

Low High
0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 3

Influent to Anaerobic Biodigestor 1

∀Blackwater/Flush = 1 gal/flush = 3.78 L/flush

Flush/visitor = 1

Qinfluent = 75.6 L/day

Qeffluent = 75.6 L/day

∀Tank = 1500 L

fL = 0.85 0

0 0

HRT = 17 days

405 hours

Effluent Inert Solids concentration
Variable

Equation

Low High

X_OUT înt 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 mg/L

Effluent fecal Solids concentration
Variable

Equation

Low High

X_OUT f̂ec 1.89 2.01 1.99 1.99 1.99 1.98 1.98 1.98 1.98 1.98 mg/L

2.43 2.00 1.99 1.99 1.98 1.98 1.98 1.98 1.98 1.98 Solver equation

Effluent substrate concentration
Variable

Equation

Low High

S_OUT 118.90 12.79 9.19 7.93 7.29 6.91 6.65 6.46 6.32 6.15 mg BOD/L

Effluent bacterial Solids concentration
Variable

Equation

Low High

X_OUT^bact 5.94 8.11 8.17 8.19 8.20 8.21 8.21 8.22 8.22 8.22 mg VSS/L

Equations for Nitrogen  

Effluent ammonia concentration
Variable

Equation

Low High

NH4_OUT 37.88 1.91 1.12 0.91 0.81 0.75 0.72 0.69 0.67 0.65 mg/L

Effluent nitrate concentration
Variable

Equation

Low High

NO3_OUT 30 61 62 62 62 62 62 62 62 62 mg/L

Settled Solids
SS 17.6 23.4 23.6 23.6 23.7 23.7 23.7 23.7 23.7 23.7 mg/L

Bacterial Death  
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Table E-1 (Continued) 
Silk Caye

Variable:

Low Reference High
Salinity 0.005 0.405 0.805 1.205 1.605 2.01 2.405 2.805 3.205 4

Maximum growth rate 10.80 10.21 9.63 9.04 8.46 7.87 6.75 5.63 4.51 3.39

Yield 0.4 0.4 0.4 0.4 0.4 0.40 0.4 0.4 0.4 0.4

Maxium Growth Rate (nitrogen) 0.9 0.73 0.67 0.62 0.57 0.52 0.53 0.48 0.43 0.37

Death Rate 0.021 0.024 0.027 0.029 0.032 0.03 0.038 0.040 0.046 0.067

Fecal hydrolysis rate coefficient 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

Bacterial settling constant 0.96 1.03 1.092 1.158 1.224 1.29 1.356 1.422 1.488 1.558

Influent to Anaerobic Biodigestor 1

∀Blackwater/Flush = 1 gal/flush = 3.78 L/flush

Flush/visitor = 1

Qinfluent = 75.6 L/day

Qeffluent = 75.6 L/day

0 0

∀Tank = 1500 L

fL = 0.85

HRT = 17 days

405 hours

Effluent Inert Solids concentration
Variable

Equation

Low Reference High

X_OUT înt 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 mg/L

Effluent fecal Solids concentration
Variable

Equation

Low Reference High

X_OUT f̂ec 1.60 1.68 1.76 1.84 1.91 1.98 2.06 2.13 2.22 2.35 mg/L

1.60 1.68 1.76 1.84 1.91 1.98 2.06 2.13 2.22 2.35 Solver equation

Effluent sB34strate concentration
Variable

Equation

Low Reference High

S_OUT 3.22 3.69 4.24 4.88 5.65 6.58 8.56 11.78 18.00 35.82 mg BOD/L

Effluent bacterial Solids concentration
Variable

Equation

Low Reference High

X_OUT^bact 11.15 10.42 9.78 9.20 8.68 8.21 7.77 7.35 6.91 6.25 mg VSS/L

Equations for Nitrogen  

Effluent ammonia concentration
Variable

Equation

Low Reference High

NH4_OUT 0.22 0.31 0.37 0.45 0.56 0.71 0.74 0.97 1.40 2.59 mg/L

Effluent nitrate concentration
Variable

Equation

Low Reference High

NO3_OUT 62 62 62 62 62 62 62 62 62 61 mg/L

Settled Solids
SS 23.5 23.5 23.6 23.6 23.7 23.7 23.7 23.6 23.3 22.4 mg/L

Bacterial Death
Death 2.93 2.74 2.57 2.42 2.28 2.16 2.04 1.93 1.82 1.64 mg/L  
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APPENDIX F: VERIFICATION OF MODEL THROUGH MATERIAL BALANCE OF 

NITROGEN 
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Figure F-1: Graphical Results of Nitrogen Mass Balance within the Developed Model 

 

Table F-1: Calculations of Nitrogen Mass Balance within the Developed Model 

NH4,in = 78 mg/L - NH4

NO3,in = 3 mg/L - NO3

Xfec,in = 100 mg/L - VSS

7.0 mg/L - N

TOTAL 88.0 mg/L - N

Theta

NH4,out 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 1.2 mg/L - NH4

NO3,out 61.9 62.2 62.2 62.3 62.3 62.3 62.2 62.2 62.2 62.1 mg/L - NO3

Xfec,out 2.0 2.4 2.6 2.8 3.0 3.1 3.2 3.4 3.5 3.6 mg/L - VSS

as N 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 mg/L - N

Xbact,out 8.2 16.1 23.5 30.3 36.5 42.3 47.7 52.8 57.5 61.9 mg/L - VSS

as N 1.0 1.9 2.8 3.6 4.4 5.1 5.7 6.3 6.9 7.4 mg/L - N

Settled Solids23.7 22.4 21.4 20.5 19.7 19.0 18.3 17.7 17.1 16.6

TOTAL 87.4 87.4 87.4 87.5 87.5 87.5 87.5 87.5 87.5 87.6 mg/L - N

Inputs

Outputs

Laughing Bird Caye
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Table F-1 (Continued)

NH4,out 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 mg/L - NH4

NO3,out 61.8 62.0 62.3 62.4 62.5 62.6 62.7 62.7 62.7 62.8 mg/L - NO3

Xfec,out 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.10 mg/L - VSS

as N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 mg/L - N

Xbact,out 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.004 mg/L - VSS

as N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 mg/L - N

Settled Solids23.2 22.9 22.4 22.1 21.8 21.6 21.5 21.3 21.2 20.9

TOTAL 85.2 85.1 84.9 84.8 84.6 84.5 84.4 84.2 84.1 83.9 mg/L - N

NH4,out 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9 mg/L - NH4

NO3,out 61.5 61.9 62.1 62.2 62.2 62.3 62.3 62.3 62.3 62.3 mg/L - NO3

Xfec,out 1.53 2.03 2.28 2.45 2.58 2.69 2.79 2.88 2.96 3.05 mg/L - VSS

as N 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 mg/L - N

Xbact,out 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 mg/L - VSS

as N 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 mg/L - N

Settled Solids24.6 23.6 22.8 22.2 21.6 21.1 20.6 20.2 19.7 19.3

TOTAL 87.4 86.9 86.3 85.8 85.3 84.9 84.4 84.0 83.6 83.2 mg/L - N

Oxygen

NH4,out 55.9 3.3 1.4 1.0 0.9 0.8 0.8 0.7 0.7 0.7 mg/L - NH4

NO3,out 5.4 60.2 61.8 62.0 62.1 62.2 62.2 62.2 62.2 62.3 mg/L - NO3

Xfec,out 2.4 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 mg/L - VSS

as N 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 mg/L - N

Xbact,out 21.3 19.4 19.7 19.8 19.8 19.9 19.9 19.9 19.9 19.9 mg/L - VSS

as N 2.6 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 mg/L - N

Settled Solids23.3 21.5 21.8 21.8 21.9 21.9 21.9 21.9 21.9 21.9

TOTAL 87.4 87.5 87.4 87.4 87.4 87.4 87.4 87.4 87.4 87.4 mg/L - N

NH4,out 33.4 0.7 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 mg/L - NH4

NO3,out 8.6 62.5 62.5 62.6 62.6 62.6 62.6 62.6 62.6 60.7 mg/L - NO3

Xfec,out 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 mg/L - VSS

as N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 mg/L - N

Xbact,out 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 mg/L - VSS

as N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 mg/L - N

Settled Solids23.0 21.6 21.7 21.7 21.7 21.7 21.7 21.7 21.7 17.1

TOTAL 65.0 84.7 84.7 84.6 84.6 84.6 84.6 84.6 84.6 78.2 mg/L - N

NH4,out 55.5 2.9 1.3 1.0 0.8 0.8 0.7 0.7 0.7 0.6 mg/L - NH4

NO3,out 5.5 60.2 61.5 61.7 61.8 61.9 61.9 61.9 61.9 61.9 mg/L - NO3

Xfec,out 1.89 2.01 1.99 1.99 1.99 1.98 1.98 1.98 1.98 1.98 mg/L - VSS

as N 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 mg/L - N

Xbact,out 8.8 8.0 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 mg/L - VSS

as N 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 mg/L - N

Settled Solids25.2 23.3 23.5 23.6 23.7 23.7 23.7 23.7 23.7 23.7

TOTAL 87.4 87.4 87.4 87.4 87.4 87.4 87.4 87.4 87.4 87.4 mg/L - N

Salinity

NH4,out 0.2 0.3 0.4 0.5 0.6 0.8 0.8 1.0 1.5 2.9 mg/L - NH4

NO3,out 62.6 62.6 62.5 62.4 62.3 62.2 62.3 62.2 62.0 61.6 mg/L - NO3

Xfec,out 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.9 3.1 mg/L - VSS

as N 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 mg/L - N

Xbact,out 26.3 24.8 23.4 22.1 20.9 19.9 18.9 17.9 16.9 15.2 mg/L - VSS

as N 3.2 3.0 2.8 2.6 2.5 2.4 2.3 2.1 2.0 1.8 mg/L - N

Settled Solids21.4 21.5 21.6 21.7 21.8 21.9 21.9 21.9 21.6 20.6

TOTAL 87.6 87.5 87.5 87.5 87.5 87.4 87.4 87.4 87.4 87.2 mg/L - N

NH4,out 0.2 0.3 0.4 0.5 0.6 0.7 0.7 1.0 1.4 2.6 mg/L - NH4

NO3,out 62.4 62.3 62.2 62.1 62.0 61.9 61.9 61.8 61.7 61.3 mg/L - NO3

Xfec,out 1.60 1.68 1.76 1.84 1.91 1.98 2.06 2.13 2.22 2.35 mg/L - VSS

as N 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 mg/L - N

Xbact,out 11.2 10.4 9.8 9.2 8.7 8.2 7.8 7.4 6.9 6.2 mg/L - VSS

as N 1.3 1.3 1.2 1.1 1.0 1.0 0.9 0.9 0.8 0.7 mg/L - N

Settled Solids23.5 23.5 23.6 23.6 23.7 23.7 23.7 23.6 23.3 22.4

TOTAL 87.5 87.5 87.5 87.5 87.4 87.4 87.4 87.4 87.4 87.2 mg/L - N

Little Water Caye

Silk Caye

Laughing Bird Caye

Little Water Caye

Silk Caye

Laughing Bird Caye

Silk Caye
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APPENDIX G: IMAGES PERMISSION AND COPYRIGHT 

 

G-1. Permission Acquired to Use Figure 2: Map of Belize 
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G-2. Copyright Status of House Used in Figure 3: Leach Field of a Soil Adsorption System 
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